Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Evaluation of effective spatial resolution in reconstructed PET images

Maus, J.; Hofheinz, F.; Meister, S.; Pietzsch, J.; van den Hoff, J.

Abstract

Aim: Spatial resolution is one of the key parameters for assessment of PET scanner performance. However, spatial resolution is usually determined with point or line sources, not allowing to study the finite object size and contrast effects known to affect iterative image reconstruction results. We present an approach to determine the spatial resolution at finite background for extended objects. The method was applied to preclinical PET/CT systems (Bruker PET/CT Si78, Mediso PET/CT).

Methods: Spatial resolution is assessed as the full width at half maximum (FWHM) of the point spread function (PSF, approximated by a 3D Gaussian). FWHM is determined from a fit of the convolution of the considered object (homogeneous sphere or rod) with the PSF to the reconstructed image data. In this process, the full 3D vicinity of each sphere/rod is evaluated by transforming the data to spherical/cylindrical coordinates relative to the respective object center/axis. F-18 measurements were performed with a cylindrical phantom (diameter 3.5cm) with a cylindrical insert (diameter 1cm). Measurements were performed without background and at contrast ratio 3:1, respectively.

Results: Without background, we obtained FWHM=1.3mm for the Mediso system, but severe Gibbs artefacts are present, indicating a too aggressive resolution recovery approach. The Bruker system achieves FWHM=2.1mm while avoiding any Gibbs artefacts. At 3:1 contrast, resolution of both systems decreases (to FWHM=2.6mm and 3.2mm, respectively) while Gibbs artefacts are not visible for the Mediso system, too.

Conclusions: Our preliminary results show that both investigated systems have a strongly contrast dependent spatial resolution. Optimizations of reconstruction parameters are currently underway with the aim of reducing the adverse effects of Gibbs artefacts on quantification and improving reconstructed image resolution at finite background while avoiding any negative effects on potential quantification.

Keywords: positron emission tomography (PET); spatial resolution; preclinical

Involved research facilities

  • PET-Center
  • ZRT
  • Open Access Logo Poster (Online presentation)
    59. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin, 17.04.2021, digital, Deutschland
    DOI: 10.1055/s-0041-1726820

Permalink: https://www.hzdr.de/publications/Publ-39210


Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015