Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Strong magnetoelastic coupling in MnCoSi compounds studied in pulsed magnetic fields

Zhang, F.; Bykov, E.; Gottschall, T.; van Dijk, N.; Brück, E.

Abstract

The orthorhombic MnCoSi compounds have been found to present a large magnetoelastic coupling, which is regarded as the source for the magnetocaloric effect (MCE) and the magnetostrictive effect. As a result, these compounds are potential materials for caloric applications such as solid-state refrigeration. In the presentstudy, we offer fundamental insights in the magnetoelastic coupling in these compounds based on their structural, metamagnetic, and MCE behavior. The directly measured adiabatic temperature change (ΔTad) in different initial temperatures (down to 18 K) and pulsed magnetic fields (up to 40 T) presents a moderate MCE performance (the maximum ΔTad = –3.1 K for a field change of 13 T), which results from the metamagnetic behavior of these compounds. Furthermore, the magnetization measurements in pulsed (and static) magnetic fields indicate that the magnetoelastic coupling is significantly enhanced for increasing fields resulting in an improved saturation magnetization. The metamagnetic transition is continuously pushed to lower temperatures in higher fields. The phase diagram constructed from the experimental transition temperatures Tt and the critical magnetic fields μ0Hcr indicate that the transition is terminated below 18 K and that ferromagnetism is stabilized for fields above 22.3 T. Our results provide unique insights into the strong magnetoelastic coupling under high pulsed magnetic fields, providing guidelines for the design of giant magnetocaloric materials for future caloric applications.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-37380


Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015