Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Numerical reverse engineering of general spin-wave dispersions: Bridge between numerics and analytics using a dynamic-matrix approach

Körber, L.; Kakay, A.

Abstract

Modern problems in magnetization dynamics require more and more the numerical determination of the spin-wave spectra and -dispersion in magnetic systems where analytic theories are not yet available. Micromagnetic simulations can be used to compute the spatial mode profiles and oscillation frequencies of spin-waves in magnetic system with almost arbitrary geometry and different magnetic interactions. Although numerical approaches are very versatile, they often do not give the same insight and physical understanding as analytical theories. For example, it is not always possible to decide whether a certain feature (such as dispersion asymmetry, for example) is governed by one magnetic interaction or the other. Moreover, since numerical approaches typically yield the normal modes of the system, it is not always feasible to disentangle hybridized modes. In this manuscript, we build a bridge between numerics and analytics by presenting a methodology to calculate the individual contributions to general spin-wave dispersions in a fully numerical manner. We discuss the general form of any spin-wave dispersion in terms of the effective (stiffness) fields produced by the modes. Based on a special type of micromagnetic simulation, the numerical dynamic-matrix approach, we show how to calculate each stiffness field in the respective dispersion law, separately for each magnetic interaction. In particular, it becomes possible to disentangle contributions of different magnetic interactions to the dispersion asymmetry in systems where non-reciprocity is present. At the same time, dipolar-hybridized modes can be easily disentangled. Since this methodology is independent of the geometry or the involved magnetic interactions at hand, we believe it is attractive for experimental and theoretical studies of magnetic systems where there are no analytics available yet, but also to aid the development of new analytical theories.

Keywords: spin wave; Micromagnetic simulations; theory; dispersion; dynamic-matrix approach; normal modes; hybridization; numerics

Downloads

Permalink: https://www.hzdr.de/publications/Publ-33366


Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015