Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Justification of best-estimate transient calculations in comparison to the steady-state bounding-case approach

Sangiorgi, M.; Carenini, L.; Brumm, S.; Le Tellier, R.; Viot, L.; Wu, Z.; Xia, S.; Bakouta, N.; Ederli, S.; Mascari, F.; Harti, M.; Lecomte, M.; Sagan, M.; Pandazis, P.; Jobst, M.; Gencheva, R.; Groudev, P.; Barnak, M.; Matejovic, P.; Villanueva, W.; Chen, Y.; Ma, W.; Bechta, S.; Kaliatka, A.; Valinius, M.; Kostka, P.; Techy, Z.; Vorobyov, Y.; Thomas, R.; Vokac, P.; Kotouc, M.; Korpinen, A.; Fichot, F.

Abstract

In the scope of the European IVMR (In-Vessel Melt Retention) project, calculations of In-Vessel retention (IVR) strategy with state of the art Severe Accident (SA) computer codes were performed, including the integral codes ASTEC, ATHLET-CD, MAAP, MELCOR and RELAP5/SCDAPSIM. Further codes dedicated to the study of lower plenum behaviour were also included. Simulations were performed for several types of reactors (PWR, VVER-440, VVER-1000, BWR) and several severe accident scenarios (Station Blackout (SBO) accidents and Loss-Of-Coolant accidents of several leak sizes combined with SBO). The code improvements for IVR simulation, implemented during the project, are summarized and the results obtained with the improved codes are presented in the paper.

Keywords: In-vessel melt retention; Severe Accidents; PWR; VVER-1000; VVER-440; BWR; Accident Management Measures; SBO; LOCA

  • Contribution to proceedings
    International Seminar “In-vessel retention: outcomes of IVMR project”, 20.-21.01.2020, Juan-les-Pins, France

Permalink: https://www.hzdr.de/publications/Publ-31778


Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015