Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries

Weber, N.; Galindo, V.; Priede, J.; Stefani, F.; Weier, T.

Abstract

The Tayler instability is a kink-type flow instability which occurs when the electrical current through a conducting fluid exceeds a certain critical value. Originally studied in the astrophysical context, the instability was recently shown to be also a limiting factor for the upward scalability of liquid metal batteries. In this paper, we continue our efforts to simulate this instability for liquid metals within the framework of an integro-differential equation approach. The original solver is enhanced by multi-domain support with Dirichlet-Neumann partitioning for the static boundaries. Particular focus is laid on the detailed influence of the axial electrical boundary conditions on the characteristic features of the Tayler instability, and, secondly, on the occurrence of electro-vortex flows and their relevance for okliquid metal batteries.

Keywords: liquid metal battery; simulation; OpenFOAM; magnetohydrodynamics; Tayler instability; electro-vortex flow

Permalink: https://www.hzdr.de/publications/Publ-20785


Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015