Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Long optical undulators with Traveling-Wave Thomson Scattering towards tunable, high-yield sources in the hard X-ray range

Debus, A.; Steiniger, K.; Siebold, M.; Jochmann, A.; Irman, A.; Bussmann, M.; Schramm, U.; Cowan, T.; Sauerbrey, R.

Abstract

Thomson sources, either driven by small linacs or laser-wakefield accelerated (LWFA) electrons are compact in size and can provide ultrashort, hard X-ray pulses of high brilliance. However, the finite Rayleigh length at small interaction diameters makes it increasingly difficult in head-on (180°) Thomson scenarios to avoid higher laser intensities and thus the onset of the nonlinear regime. Effectively, such a geometry limits the peak brilliance of all future Thomson sources.

We present a novel concept, Traveling-wave Thomson scattering (TWTS), which allows obtaining centimeter to meter long optical undulators, where interaction length and diameter are independent of each other. With an ultrashort, high-power laser pulse in an oblique angle scattering geometry using tilted pulse fronts, electrons and laser remain overlapped while both beams travel over distances much longer than the Rayleigh length.
This allows realizing side-scattering in laser-electron beam interactions, without compromises with regard to luminosity or overlap. Furthermore, the smallest achievable scattered bandwidth is controlled by the width of a cylindrically focused laser beam and thus is independent of the ultrashort laser bandwidth. Due to the flexibility in side-scattering angle, photon energies become tunable over a large spectral range without requiring a change in electron energy.

TWTS is particularly interesting for “pink beam” experiments at hard X-rays in which high photon yields in single, ultrashort pulses are needed. Above 100keV photon energy, this approach potentially leads to peak brilliances that are beyond the capabilities of existing synchrotron radiation sources and 2-3 orders of magnitudes higher than in current head-on Thomson scattering designs.

Towards experimental realization, we show how such a Traveling-wave setup has to be implemented. An emphasis is put on the use of varied-line spacing (VLS) gratings for dispersion precompensation of the laser beam at large interaction angles to achieve the required overlap between laser and electrons within the interaction region.

Keywords: Traveling-wave Thomson-scattering; hard X-ray; high brilliance

  • Lecture (Conference)
    RREPS 2011 -- International Symposium "Radiation from Relativistic Electrons in Periodic Structures", 12.-16.09.2011, Diamond light source, RAL, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-16172


Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015