Deep learning enhanced bilateral post-filtering of

noisy PET data
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Motivation

= PET images can exhibit high noise levels, which affects
gualitative and quantitative evaluation, especially in
respiratory gated or dynamic imaging.

= Gaussian post-filtering is routinely used to improve signal-
to-noise ratio but degrades spatial resolution and reduces
contrast recovery (CR) of small lesions.

= Edge-preserving bilateral filtering (BF) is able to overcome
this shortcoming but requires careful tuning of two

parameters o¢ and o; acting in the spatial and intensity
domain, respectively [1]:
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= Development of convolutional neuronal network (CNN) to
replicate edge-preserving properties of BF.

= Potential to remove time consuming manual tuning of BF
parameters, thus facilitating application in clinical context.
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m =7 s constant processing time for CNN-based post-filtering of
single PET volume compared to filter parameter dependent
processing time of = 3 s — 27 min for BF-based post-filtering.

Conclusions
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Methods

m Used 280 volumes from 35 respiratory-gated PET/CT
measurements (8 gates) to generate pairs of standard
recon (STD) and manually BF-filtered images for CNN
training.

= CNN based on 2D Residual UNet architecture (with long
and short skip-connections) implemented in MXNet 1.9.0

= Split data in 184 training and 40 validation image pairs for
training and 56 reserved images for testing phase.

= Quantitative comparison of STD vs. BF vs. CNN images
via percentage differences (pdiff):
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® noise-level (SUVsq / SUVmean) pdiff of homogenous 3D-
ROI (liver).

= hot structure (SUVmax) pdiff of small 3D-ROI (e.qg.
lesion).

m voxel-based correlation comparison (CNN vs. BF):
correlation coeff, voxel intensity correlation
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= Results indicate that CNN-based post-filtering produces PET images comparable to manually tuned BF.
= Noise level and CR comparable in CNN and BF-filtered images.
= Short constant vs. long parameter-dependent processing times improves clinical usability of BF type post-filtering.
= Further training with more images from different PET scanners to potentially improve/generalize CNN filtering performance.
= [ntegration of the derived CNN into new respiratory motion compensation framework under way.
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