"Autonomous Materials Thermodynamics – AutoMaT" – Rico Friedrich's Lab

Foto: Overview AutoMaT ©Copyright: Dr. Rico Friedrich

Any technology relies on a specific materials platform. As such, information technology is based on silicon and modern batteries are made of lithium compounds. The "Autonomous Materials Thermodynamics - AutoMaT" lab focuses on the self-guided, data-driven computational design of two-dimensional (2D) materials and high-entropy compounds for applications in information technology and the energy sector.

We leverage and develop state-of-the-art computational materials science methods and target three main research directions:

  • The discovery and design of 2D non-van der Waals materials - an emerging class of nanoscale compounds with qualitatively new electronic and magnetic features.
  • The data-driven modelling and prediction of novel high-entropy ceramics based on maximizing entropy instead of minimizing enthalpy.
  • Computational method development for the accurate description of ionic materials as provided by the coordination corrected enthalpies method.

The DRESDEN-concept Research Group AutoMaT is jointly run by the Chair of Theoretical Chemistry at TU Dresden and the Helmholtz-Zentrum Dresden-Rossendorf. DRESDEN-concept is the research alliance of TU Dresden and the Dresden-based non-university research as well as cultural institutions.

Research

2D Non-van der Waals Materials

Magnetization density change upon hydrogenation ©Copyright: Tom Barnowsky

Magnetization change of a non-van der Waals 2D material upon hydrogenation

2D materials are traditionally associated with the sheets forming bulk layered compounds bonded by weak van der Waals (vdW) forces. The recent surprising experimental exfoliation of atomically thin 2D sheets from non-vdW bonded oxides opens up a new perspective for this diverse class of nanostructures. Non-vdW 2D materials thus form an emerging category of low dimensional compounds possessing a wide range of novel properties enabling unique functionalities in particular due to their surface termination by cations. 

We have recently been the first to apply data-driven research principles to this novel materials class to outline several dozens of new candidates [1,2,3]. We employed the AFLOW software and database – one of the largest materials repositories world wide with over 3.5 million entries. Several compounds were identified exhibiting ultra low exfoliation energies ultimately as small as that of graphene. This can be traced back to both strong structural relaxations of the 2D sheet as well as a low oxidation state of the surface cations. All systems were characterized according to their structural, electronic, and magnetic properties. Several compounds showcase the emergence of surface states, potential topological features as well as versatile surface spin polarizations making them an attractive platform for fundamental and applied nanoscience [1,3].

We also showed that the magnetic state of these nanoscale systems can be selectively controlled via surface passivation [4]. Hydrogenation of the surface dangling bonds gives rise to a switching of the magnetic states, modification of the local spin symmetries of several candidates, and even facilitates to initiate ferromagnetism for representatives that are diamagnetic in the pristine case. Our current work focuses on outlining general principles determining the exfoliability of non-vdW compounds and on the dedicated functionalization of the systems.

[1] R. Friedrich, M. Ghorbani-Asl, S. Curtarolo, and A. V. Krasheninnikov, Data-Driven Quest for Two-Dimensional Non-van der Waals Materials, Nano Letters 22, 989 (2022). doi.org/10.1021/acs.nanolett.1c03841

[2] A. P. Balan, A. B. Puthirath, S. Roy, G. Costin, E. F. Oliveira, M. A. S. R. Saadi, V. Sreepal, R. Friedrich, P. Serles, A. Biswas, S. A. Iyengar, N. Chakingal, S. Bhattacharyya, S. K. Saju, S. C. Pardo, L. M. Sassi, T. Filleter, A. Krasheninnikov, D. S. Galvao, R. Vajtai, R. R. Nair, and P. M. Ajayan, Non-van der Waals quasi-2D materials; Recent Advances in Synthesis, Emergent Properties, and Applications, Materials Today 58, 164 (2022). doi.org/10.1016/j.mattod.2022.07.007

[3] T. Barnowsky, A. V. Krasheninnikov, and R. Friedrich, A New Group of Two-Dimensional Non-van der Waals Materials with Ultra Low Exfoliation Energies, Advanced Electronic Materials 9, 2201112 (2023). doi.org/10.1002/aelm.202201112

[4] T. Barnowsky, S. Curtarolo, A. V. Krasheninnikov, T. Heine, and R. Friedrich, Magnetic State Control of Non-van der Waals 2D Materials by Hydrogenation, Nano Letters 24, 3874 (2024). doi.org/10.1021/acs.nanolett.3c04777

 

High-entropy ceramics

High-entropy ceramic structure ©Copyright: Dr. Rico Friedrich

Structure of a high-entropy ceramic

High-entropy materials are an emerging class of compounds where the maximization of (configurational) entropy rather than the minimization of enthalpy is the key design principle. In addition to high-entropy alloys, in recent years, high-entropy ceramics have attracted particular attention wich consist of an ordered anion sublattice out of carbon, nitrogen, oxygen or boron and a chemically disordered cation sublattice containing several - typically five or more - different transition metal species. Due to the disorder, these materials exhibit a range of appealing mechanical, thermal, electronic, and catalytic properties.

The computational design of these random systems must first be made feasible by taking into account a proper ensemble of ordered structures representing the disordered state. This can be achieved by the so called partial occupation scheme. Moreover, it has to address the challenging task of balancing both entropic as well as enthalpic contributions for the synthesizability of these compounds. While the previously introduced entropy forming ability descriptor (EFA) is capable of predicting the high-entropy single-phase formation of a range of high-entropy carbides, it shows shortcomings for other high-entropy ceramics classes. We recently contributed to the solution of this issue by the formulation of the disordered enthalpy-entropy descriptor (DEED) which successfully enabled the prediction of synthesicability of a wide rage of high-entropy carbides, carbo-nitrides, and borides [1]. Successful experimental verification of the predictions is provided for 17 novel compositions. The ongoing research focuses on expanding the predictions as well as to study the properties of the discovered materials in detail.

[1] S. Divilov, H. Eckert, D. Hicks, C. Oses, C. Toher, R. Friedrich, M. Esters, M. J. Mehl, A. C. Zettel, Y. Lederer, E. Zurek, J.-P. Maria, D. W. Brenner, X. Campilongo, S. Filipovic, W. G. Fahrenholtz, C. J. Ryan, C. M. DeSalle, R. J. Crealese, D. E. Wolfe, A. Calzolari, and S. Curtarolo, Disordered enthalpy-entropy descriptor for high-entropy ceramics discovery, Nature 625, 66 (2024). doi.org/10.1038/s41586-023-06786-y

 

Thermodynamic stability - method development

Coordination in perovskite ©Copyright: Dr. Rico Friedrich

Oxygen coordination in perovskite

Thermodynamics is the key to materials discovery and design since synthesizability can be ensured for thermodynamically stable systems. While there have been significant successes in calculating finite temperature effects from first principles, the computational modeling of formation enthalpies — rigorously quantifying the thermodynamic stability as the enthalpy difference between the material and its elemental references — still poses a fundamental challenge. In particular for ionic materials such as oxides, standard (semi-)local and even currently available more advanced ab initio approaches yield only inaccurate predictions with errors of several hundred meV/atom which inhibits materials design.

We have recently introduced the coordination corrected enthalpies (CCE) method yielding highly accurate room temperature formation enthalpies with mean absolute errors down to 27 meV/atom, i.e., on par with the room temperature energy scale [1]. It is based on an intuitive parametrization of density functional errors with respect to the bonding topology and the cation oxidation states of the compound. In addition to the high quantitative accuracy, CCE is also capable of correcting the relative energetics of different polymorphs at fixed composition — a qualitative advantage versus earlier schemes.

The method has also been implemented into the AFLOW software for computational materials design as the AFLOW-CCE module [2,3,4]: a tool where users can input a structure file and receive the CCE corrections and formation enthalpies. As the method is based on cation coordination numbers and oxidation states, the software also includes the functionality to retrieve this information for a given structure. The implementation features a command line tool, a web interface, and a Python environment [2,3,4]. Within the further development, CCE is generalized to all other anion classes requiring corrections [5]. The method will hence be leveraged to correctly asses the energetics and to realize the predictive design of novel bulk, nanoscale as well as high-entropy phases.

[1] R. Friedrich, D. Usanmaz, C. Oses, A. Supka, M. Fornari, M. Buongiorno Nardelli, C. Toher, and S. Curtarolo, Coordination corrected ab initio formation enthalpies, Nature Partner Journal Computational Materials 5, 59 (2019). doi.org/10.1038/s41524-019-0192-1

[2] R. Friedrich, M. Esters, C. Oses, S. Ki, M. J. Brenner, D. Hicks, M. J. Mehl, C. Toher, and S. Curtarolo, Automated coordination corrected enthalpies with AFLOW-CCE, Physical Review Materials 5, 043803 (2021). doi.org/10.1103/PhysRevMaterials.5.043803

[3] M. Esters, C. Oses, S. Divilov, H. Eckert, R. Friedrich, D. Hicks, M. J. Mehl, F. Rose, A. Smolyanyuk, A. Calzolari, X. Campilongo, C. Toher, and S. Curtarolo,
aflow.org: a web ecosystem of databases, software and tools, Computational Materials Science 216, 111808 (2023). doi.org/10.1016/j.commatsci.2022.111808

[4] C. Oses, M. Esters, D. Hicks, S. Divilov, H. Eckert, R. Friedrich, M. J. Mehl, A. Smolyanyuk, X. Campilongo, A. van de Walle, J Schroers, A.G. Kusne, I. Takeuchi, E. Zurek, M. Buongiorno Nardelli, M. Fornari, Y. Lederer, O. Levy, C. Toher, and S. Curtarolo, aflow++: a C++ framework for autonomous materials design, Computational Materials Science 217, 111889 (2023). doi.org/10.1016/j.commatsci.2022.111889

[5] R. Friedrich and S. Curtarolo, AFLOW-CCE for the thermodynamics of ionic materials, The Journal of Chemical Physics 160, 042501 (2024). doi.org/10.1063/5.0184917

 

Publications

2024
   
27. T. Barnowsky, S. Curtarolo, A. V. Krasheninnikov, T. Heine, and R. Friedrich,
Magnetic State Control of Non-van der Waals 2D Materials by Hydrogenation
Front cover article. Nano Letters 24, 3874 (2024). DOI: 10.1021/acs.nanolett.3c04777
 
BibTeX PDF Supporting information Primary research data
26. S. Divilov, H. Eckert, D. Hicks, C. Oses, C. Toher, R. Friedrich, M. Esters, M. J. Mehl, A. C. Zettel, Y. Lederer, E. Zurek, J.-P. Maria, D. W. Brenner, X. Campilongo, S. Filipovic, W. G. Fahrenholtz, C. J. Ryan, C. M. DeSalle, R. J. Crealese, D. E. Wolfe, A. Calzolari, and S. Curtarolo,
Disordered enthalpy-entropy descriptor for high-entropy ceramics discovery
Nature 625, 66 (2024). DOI: 10.1038/s41586-023-06786-y
 
BibTeX PDF Supporting information  
25. R. Friedrich and S. Curtarolo,
AFLOW-CCE for the thermodynamics of ionic materials
This paper is part of the JCP Festschrift for John Perdew. The Journal of Chemical Physics 160, 042501 (2024). DOI: 10.1063/5.0184917
 
BibTeX      
24. S. Divilov, H. Eckert, C. Toher, R. Friedrich, A. C. Zettel, D. W. Brenner, W. G. Fahrenholtz, D. E. Wolfe, E. Zurek, J.-P. Maria, N. Hotz, X. Campilongo, and S. Curtarolo,
A priori procedure to establish spinodal decomposition in alloys
Acta Materialia 266, 119667 (2024). DOI: 10.1016/j.actamat.2024.119667
 
BibTeX      
2023
   
23. T. Barnowsky, A. V. Krasheninnikov, and R. Friedrich,
A New Group of Two-Dimensional Non-van der Waals Materials with Ultra Low Exfoliation Energies
Advanced Electronic Materials 9, 2201112 (2023). DOI: 10.1002/aelm.202201112
 
BibTeX PDF Supporting information Primary research data
22. C. Oses, M. Esters, D. Hicks, S. Divilov, H. Eckert, R. Friedrich, M. J. Mehl, A. Smolyanyuk, X. Campilongo, A. van de Walle, J Schroers, A.G. Kusne, I. Takeuchi, E. Zurek, M. Buongiorno Nardelli, M. Fornari, Y. Lederer, O. Levy, C. Toher, and S. Curtarolo,
aflow++: a C++ framework for autonomous materials design
Editor’s choice paper Computational Materials Science 217, 111889 (2023). DOI: 10.1016/j.commatsci.2022.111889
 
BibTeX      
21. M. Esters, C. Oses, S. Divilov, H. Eckert, R. Friedrich, D. Hicks, M. J. Mehl, F. Rose, A. Smolyanyuk, A. Calzolari, X. Campilongo, C. Toher, and S. Curtarolo,
aflow.org: a web ecosystem of databases, software and tools
Computational Materials Science 216, 111808 (2023). DOI: 10.1016/j.commatsci.2022.111808
 
BibTeX      
2022
   
20. A. P. Balan, A. B. Puthirath, S. Roy, G. Costin, E. F. Oliveira, M. A. S. R. Saadi, V. Sreepal, R. Friedrich, P. Serles, A. Biswas, S. A. Iyengar, N. Chakingal, S. Bhattacharyya, S. K. Saju, S. C. Pardo, L. M. Sassi, T. Filleter, A. Krasheninnikov, D. S. Galvao, R. Vajtai, R. R. Nair, and P. M. Ajayan,
Non-van der Waals quasi-2D materials; Recent Advances in Synthesis, Emergent Properties, and Applications
Materials Today 58, 164 (2022). DOI: 10.1016/j.mattod.2022.07.007
 
BibTeX      
19. R. Friedrich, M. Ghorbani-Asl, S. Curtarolo, and A. V. Krasheninnikov,
Data-Driven Quest for Two-Dimensional Non-van der Waals Materials
Nano Letters 22, 989 (2022). DOI: 10.1021/acs.nanolett.1c03841
 
BibTeX PDF Supporting information Primary research data
2021
   
18. M. J. Mehl, M. Ronquillo, D. Hicks, M. Esters, C. Oses, R. Friedrich, A. Smolyanyuk, E. Gossett, D. Finkenstadt, and S. Curtarolo,
Tin-pest problem as a test of density functionals using high-throughput calculations
Physical Review Materials 5, 083608 (2021). DOI: 10.1103/PhysRevMaterials.5.083608
 
BibTeX      
17. R. Friedrich, M. Esters, C. Oses, S. Ki, M. J. Brenner, D. Hicks, M. J. Mehl, C. Toher, and S. Curtarolo,
Automated coordination corrected enthalpies with AFLOW-CCE
Physical Review Materials 5, 043803 (2021). DOI: 10.1103/PhysRevMaterials.5.043803
 
BibTeX      
2019
   
16. R. Friedrich, D. Usanmaz, C. Oses, A. Supka, M. Fornari, M. Buongiorno Nardelli, C. Toher, and S. Curtarolo,
Coordination corrected ab initio formation enthalpies
Nature Partner Journal Computational Materials 5, 59 (2019). DOI: 10.1038/s41524-019-0192-1
 
BibTeX PDF Supporting information  
2018
   
15. D. Usanmaz, P. Nath, C. Toher, J. J. Plata, R. Friedrich, M. Fornari, M. Buongiorno Nardelli, and S. Curtarolo,
Spinodal Superlattices of Topological Insulators
Chemistry of Materials 30, 2331 (2018). DOI: 10.1021/acs.chemmater.7b05299
 
BibTeX      
2017
   
14. R. Friedrich, V. Caciuc, B. Zimmermann, G. Bihlmayer, N. Atodiresei, and S. Blügel,
Creating anisotropic spin-split surface states in momentum space by molecular adsorption
Physical Review B 96, 085403 (2017). DOI: 10.1103/PhysRevB.96.085403
 
BibTeX      
13. V. Heß, R. Friedrich, F. Matthes, V. Caciuc, N. Atodiresei, D. E. Bürgler, S. Blügel, and C. M. Schneider,
Magnetic subunits within a single molecule-surface hybrid
New Journal of Physics 19, 053016 (2017). DOI: 10.1088/1367-2630/aa6ece
 
BibTeX PDF Supporting information  
12. R. Friedrich, V. Caciuc, G. Bihlmayer, N. Atodiresei, and S. Blügel,
Designing the Rashba spin texture by adsorption of inorganic molecules
New Journal of Physics 19, 043017 (2017). DOI: 10.1088/1367-2630/aa64a1
 
BibTeX PDF Supporting information  
11. T. Esat, R. Friedrich, F. Matthes, V. Caciuc, N. Atodiresei, S. Blügel, D. E. Bürgler, F. S. Tautz, and C. M. Schneider,
Quantum interference effects in molecular spin hybrids
Physical Review B 95, 094409 (2017). DOI: 10.1103/PhysRevB.95.094409
 
BibTeX      
2016
   
10. R. Friedrich,
Ab initio investigation of hybrid molecular-metallic interfaces as a tool to design surface magnetic properties for molecular spintronics
Schriften des Forschungszentrums Jülich, Key Technologies, Volume 138 (2016), ISBN 978-3-95806-194-1
 
BibTeX      
9. R. Friedrich, V. Caciuc, N. Atodiresei, and S. Blügel,
Exchange interactions of magnetic surfaces below two-dimensional materials
Physical Review B Rapid Communication 93, 220406(R) (2016). DOI: 10.1103/PhysRevB.93.220406
 
BibTeX      
2015
   
8. R. Friedrich, V. Caciuc, N. Atodiresei, and S. Blügel,
Molecular induced skyhook effect for magnetic interlayer softening
Physical Review B 92, 195407 (2015). DOI: 10.1103/PhysRevB.92.195407
 
BibTeX      
7. R. Friedrich, V. Caciuc, N. S. Kiselev, N. Atodiresei, and S. Blügel,
Chemically functionalized magnetic exchange interactions of hybrid organic-ferromagnetic metal interfaces
Physical Review B 91, 115432 (2015). DOI: 10.1103/PhysRevB.91.115432
 
BibTeX      
2013
   
6. R. Friedrich, B. Kersting, and J. Kortus,
Fermi level engineering in organic semiconductors for controlled manufacturing of charge and spin transfer materials
Physical Review B 88, 155327 (2013). DOI: 10.1103/PhysRevB.88.155327
 
BibTeX      
5. R. Friedrich, S. Lindner, T. Hahn, C. Loose, S. Liebing, M. Knupfer, and J. Kortus,
Systematic theoretical investigation of the phthalocyanine based dimer: MnPcδ+/F16CoPcδ−
Physical Review B 87, 115423 (2013). DOI: 10.1103/PhysRevB.87.115423
 
BibTeX      
4. S. Lindner, B. Mahns, A. König, F. Roth, M. Knupfer, R. Friedrich, T. Hahn, and J. Kortus,
Phthalocyanine dimers in a blend: Spectroscopic and theoretical studies of MnPcδ+/F16CoPcδ−
The Journal of Chemical Physics 138, 024707 (2013). DOI: 10.1063/1.4774060
 
BibTeX      
2012
   
3. S. Lindner, M. Knupfer, R. Friedrich, T. Hahn, and J. Kortus,
Hybrid States and Charge Transfer at a Phthalocyanine Heterojunction: MnPcδ+/F16CoPcδ−
Editors’ Suggestion Physical Review Letters 109, 027601 (2012). DOI: 10.1103/PhysRevLett.109.027601
 
BibTeX      
2. R. Friedrich, T. Hahn, J. Kortus, M. Fronk, F. Haidu, G. Salvan, D. R. T. Zahn, M. Schlesinger, M. Mehring, F. Roth, B. Mahns, and M. Knupfer,
Electronic states and the influence of oxygen addition on the optical absorption behaviour of manganese phthalocyanine
The Journal of Chemical Physics 136, 064704 (2012). DOI: 10.1063/1.3683253
 
BibTeX      
2011
   
1. M. Grobosch, B. Mahns, C. Loose, R. Friedrich, C. Schmidt, J. Kortus, and M. Knupfer,
Identification of the electronic states of manganese phthalocyanine close to the Fermi level
Chemical Physics Letters 505, 122 (2011). DOI: 10.1016/j.cplett.2011.02.039 
 
BibTeX      

People

Jobs

The AutoMaT group has frequent openings for PhD and Postdoc positions for individuals interested in data-driven/computational materials design, 2D materials, high-entropy systems, materials thermodynamics, and magnetism.

We currently have two openings for Postdoc and/or PhD positions. Details are described in this PDF.

Interested candidates are encouraged to submit their application documents to r.friedrich@hzdr.de


Contact:

Dr. Rico Friedrich
Institute of Ion Beam Physics and Materials Research at HZDR
Phone: +49 351 260 3718 | Email: r.friedrich@hzdr.de


Foto: DRESDEN-concept Logo ©Copyright: DRESDEN-concept
Foto: Logo TU Dresden ©Copyright: extern, TU Dresden