Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Engaging UniCAR T cells via short-lived and longer lasting target modules

Arndt, C.; Loureiro, L.; Feldmann, A.; Koristka, S.; Mitwasi, N.; Jureczek, J.; Hoffmann, A.; Berndt, N.; Bergmann, R.; Bachmann, M.

Abstract

Background: Chimeric antigen receptor (CAR) T cell therapy has demonstrated impressive clinical efficiency, but can also cause moderate to severe adverse effects that might be even fatal. Thus, preventing or managing CAR T cell toxicity is still an important issue for successful treatment of tumor patients. In order to provide a novel CAR technology platform with an improved safety profile, we established the switchable UniCAR system. This platform consists of (I) universal CAR (UniCAR) T cells that are per se inactive. Their anti-tumor activity can be specifically and repeatedly turned on/off in dependence of soluble tumor-binding target modules (TM).e.g.1-4 TMs are constructed by fusing an antigen-specific binding moiety with the E5B9 peptide epitope recognized by UniCARs. As these molecules are rapidly eliminated, UniCAR T cells can be easily controlled by TM dosing.
Aims: As the risk for CAR T cell-related toxicities will also decrease with reduction of tumor burden, we intended to develop TMs with prolonged half-life that might ease clinical application and improve elimination of residual tumor cells in late phase of tumor therapy.
Methods: We constructed a set of novel, longer lasting TMs by fusion of different tumor-specific single-chain fragment variables (scFv) and the E5B9 peptide epitope to the Fc domain of human IgG4 antibodies. The resulting IgG4-based TMs were functionally compared with smaller, scFv-based TMs in vitro and characterized for their pharmacokinetic properties in experimental mice.
Results: The novel IgG4-based TMs are able to efficiently activate UniCAR T cells for killing of various tumor cell lines. In comparison to short-lived TMs, they are characterized by a comparable or increased efficiency at low TM concentrations. Pharmacokinetic studies in tumor-bearing mice further revealed that IgG4-based TM have a prolonged plasma half-life and enhanced bioavailability.
Summary: Our data demonstrate that IgG4-based TMs in combination with smaller TMs are highly promising tools for redirection of UniCAR T cells to various cancer cells. Once the tumor burden is reduced, UniCAR T cells can be combined with IgG4-based TMs instead of small TMs. This is more convenient for patients as IgG4-based TM have not to be continuously infused due to their prolonged serum half-lives. Overall, the combination of UniCAR T cells with TMs of different size and specificity should allow a more convenient, individualized and safe treatment regimen of cancer patients.

  • Open Access Logo Vortrag (Konferenzbeitrag)
    Tumorimmunology meets Oncology (TIMO) XV, 25.-27.04.2019, Halle, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30271


Jahre: 2023 2022 2021 2020 2019 2018 2017 2016 2015