Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

The impact of climate transitions on the radionuclide transport through a sedimentary aquifer

Flügge, J.; Stockmann, M.; Schneider, A.; Noseck, U.

Abstract

In long-term safety assessments for nuclear waste repositories in deep formations, geological time scales have to be considered. Possible future climatic changes are expected to alter the boundary conditions, the flow regime and the geochemical environment in the aquifers. The codes d³f (distributed density-driven flow) and r³t (radionuclides, reaction, retardation, and transport) are being developed to simulate contaminant transport in large heterogeneous areas over long periods in time, considering hydrogeochemical interactions and radioactive decay. A new methodology to use temporally and spatially variant sorption coefficients depending on the geochemical environment is being developed by introducing the transport of relevant components in solution and a pre-computed matrix of sorption coefficients with values being dependent on these components. In Germany, the Gorleben salt dome is being investigated as a potential site for a nuclear waste repository. A sea water inundation will lead to a decrease of the flow velocities and a horizontal salinity-dependent stratification of the groundwater, while permafrost formation in the upper aquifer and an inflow of glacial meltwater into the lower aquifer will lead to low salinities and high flow velocities in unfrozen zones. Transport simulations employing conventional sorption coefficients are the basis for future analyses employing the new methodology.

Keywords: Climate transitions; nuclear waste disposal; radionuclide transport; numerical modeling; smart Kd-concept; Northern Germany

  • Buchkapitel
    Jude Cobbing; Shafick Adams; Ingrid Dennis; Kornelius Riemann: Assessing and Managing Groundwater in Different Environments, Netherlands: CRC Press, 2013, 9781138001008, Kapitel 11

Downloads

Permalink: https://www.hzdr.de/publications/Publ-17224


Jahre: 2023 2022 2021 2020 2019 2018 2017 2016 2015