Recent publications

2024

Numerical modeling and simulation of microbially induced calcite precipitation on a cement surface at the pore scale

Yuan, T.(1); Cherkouk, A.(2); Fischer, C.(3)


In search of phytoremediation candidates: Eu(III) bioassociation and root exudation in hydroponically grown plants

Klotzsche, M.(5); Dück, V.(6); Drobot, B.(7); Vogel, M.(8); Raff, J.(9); Stumpf, T.(10); Steudtner, R.(11)

Related publications


Effect of Ba(II), Eu(III), and U(VI) on rat NRK-52E and human HEK-293 kidney cells in vitro

Senwitz, C.; Butscher, D.(15); Holtmann, L.(16); Vogel, M.(17); Steudtner, R.(18); Drobot, B.(19); Stumpf, T.(20); Barkleit, A.(21); Heller, A.(22)


Biostimulation of Indigenous Microbes for Uranium Bioremediation in Former U Mine Water: Multidisciplinary approach assessment

Newman Portela, A.(24); Krawczyk-Bärsch, E.(25); Lopez Fernandez, M.(26); Bok, F.(27); Kassahun, A.; Drobot, B.(28); Steudtner, R.(29); Stumpf, T.(30); Raff, J.(31); Merroun, M. L.(32)


2023

Learning from nature: recovery of rare earth elements by the extremophilic bacterium Methylacidiphilum fumariolicum

Singer, H.; Steudtner, R.(34); Sottorff, I.; Drobot, B.; Pol, A.; Op Den Camp, H. J. M.; Daumann, L. J.

Related publications


Uranium(VI) interactions with Pseudomonas sp. PS-0-L, V4-5-SB and T5-6-I

Kasko, J.; Li, X.; Müller, K.(37); Ge, Y.; Vettese, G. F.; Law, G. T. W.; Siitari-Kauppi, M.; Huittinen, N. M.(38); Raff, J.(39); Bomberg, M.; Herzig, M.


Equilibrium Thermodynamics of Macropa Complexes with Selected Metal Isotopes of Radiopharmaceutical Interest

Blei, M. K.(41); Waurick, L.; Reissig, F.(42); Kopka, K.(43); Stumpf, T.(44); Drobot, B.(45); Kretzschmar, J.(46); Mamat, C.(47)


Europium(III) as luminescence probe for interactions of a sulfate-reducing microorganism with potentially toxic metals

Hilpmann, S.(49); Moll, H.(50); Drobot, B.(51); Vogel, M.; Hübner, R.(52); Stumpf, T.(53); Cherkouk, A.(54)

Related publications


Europium(III) Meets Etidronic Acid (HEDP): a Coordination Study Combining Spectroscopic, Spectrometric, and Quantum Chemical Methods

Heller, A.(58); Senwitz, C.; Foerstendorf, H.(59); Tsushima, S.(60); Holtmann, L.; Drobot, B.(61); Kretzschmar, J.(62)


How tobacco (Nicotiana tabacum) BY-2 cells cope with Eu(III) – A microspectroscopic study.

Klotzsche, M.(64); Vogel, M.(65); Sachs, S.(66); Raff, J.(67); Stumpf, T.(68); Drobot, B.(69); Steudtner, R.(70)


Halomonas gemina sp. nov. and Halomonas llamarensis sp. nov., two siderophore-producing organisms isolated from high-altitude salars of the Atacama Desert

Hintersatz, C.; Singh, S.; Antonio Rojas, L.; Kretzschmar, J.(72); Wei, T.-S.(73); Khambhati, K.; Kutschke, S.(74); Lehmann, F.; Singh, V.; Jain, R.; Pollmann, K.(75)

Related publications


Distinct Effects of Chemical Toxicity and Radioactivity on Metabolic Heat of Cultured Cells Revealed by “Isotope-Editing”

Oertel, J.; Sachs, S.(78); Flemming, K.; Hassan Obeid, M.; Fahmy, K.(79)


Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC – An Improved Approach to More Robust Thermodynamics

Friedrich, S.(81); Sieber, C.; Drobot, B.(82); Tsushima, S.(83); Barkleit, A.(84); Schmeide, K.(85); Stumpf, T.(86); Kretzschmar, J.(87)


Presence of uranium(V) during uranium(VI) reduction by Desulfosporosinus hippei DSM 8344T

Hilpmann, S.(89); Roßberg, A.; Steudtner, R.(90); Drobot, B.(91); Hübner, R.(92); Bok, F.(93); Prieur, D.(94); Bauters, S.(95); Kvashnina, K.(96); Stumpf, T.(97); Cherkouk, A.(98)

Related publications


Minor Actinides Can Replace Essential Lanthanides in Bacterial Life

Singer, H.; Steudtner, R.(101); Klein, A. S.; Rulofs, C.; Zeymer, C.; Drobot, B.(102); Pol, A.; Martinez-Gomez, C.; Daumann, L. J.

Related publications


Localization and chemical speciation of europium(III) in Brassica napus plants

Jessat, J.(105); John, W.(106); Moll, H.(107); Vogel, M.(108); Steudtner, R.(109); Drobot, B.(110); Hübner, R.(111); Stumpf, T.(112); Sachs, S.(113)


Environmental exposure to uranium in a population living in close proximity to gold mine tailings in South Africa

Zupunski, L.; Street, R.; Ostroumova, E.; Winde, F.; Sachs, S.(115); Geipel, G.; Nkosi, V.; Bouaoun, L.; Haman, T.; Schüz, J.; Mathee, A.


2022

Peptide functionalized Dynabeads for the magnetic carrier separation of rare-earth fluorescent lamp phosphors

Boelens, P.(117); Bobeth, C.; Hinman, N.; Weiß, S.(118); Zhou, S.(119); Vogel, M.; Drobot, B.(120); Shams Aldin Azzam, S.; Pollmann, K.(121); Lederer, F.(122)


The Chemical Journey of Europium(III) through Winter Rye (Secale cereale L.) – Understanding through Mass Spectrometry and Chemical Microscopy

Stadler, J.; Vogel, M.; Steudtner, R.(124); Drobot, B.(125); Kogiomtzidis, A.; Weiss, M.; Walther, C.

Related publications


Vibrio salinus sp. nov., a marine nitrogen-fixing bacterium isolated from the lagoon sediment of an islet inside an atoll in the western Pacific Ocean

Huang, W.; Wang, L.; Chen, J.; Chen, Y. C.; Wei, T.-S.(128); Chiang, Y. C.; Wang, P.; Lee, T.; Lin, S.; Huang, L.; Shieh, W. Y. S.


Lanmodulin peptides – unravelling the binding of the EF-Hand loop sequences stripped from the structural corset

Gutenthaler, S. M.(130); Tsushima, S.(131); Steudtner, R.(132); Gailer, M.; Hoffmann-Röder, A.; Drobot, B.(133); Daumann, L. J.

Related publications


Speciation and spatial distribution of Eu(III) in fungal mycelium

Günther, A.; Wollenberg, A.; Vogel, M.; Drobot, B.(136); Steudtner, R.(137); Freitag, L.; Hübner, R.(138); Stumpf, T.(139); Raff, J.(140)


Peptidoglycan as major binding motif for Uranium bioassociation on Magnetospirillum magneticum AMB-1 in contaminated waters

Krawczyk-Bärsch, E.; Ramtke, J.; Drobot, B.; Müller, K.; Steudtner, R.; Kluge, S.; Hübner, R.; Raff, J.


A comprehensive study on the interaction of Eu(III) and U(VI) with plant cells (Daucus carota) in suspension

Jessat, J.(143); Moll, H.(144); John, W.(145); Bilke, M.-L.; Hübner, R.(146); Kretzschmar, J.(147); Steudtner, R.(148); Drobot, B.(149); Stumpf, T.(150); Sachs, S.(151)


Charge-density reduction promotes ribozyme activity in RNA–peptide coacervates via RNA fluidization and magnesium partitioning

Iglesias-Artola, J. M.; Drobot, B.; Kar, M.; Fritsch, A. W.; Mutschler, H.(153); Dora Tang, T.-Y.; Kreysing, M.


Studies of Pyrroloquinoline Quinone Species in Solution and in Lanthanide-dependent Methanol Dehydrogenases

Al Danaf, N.; Kretzschmar, J.(155); Jahn, B.; Singer, H.; Pol, A.; Op Den Camp, H. J. M.; Steudtner, R.(156); Lamb, D. C.; Drobot, B.(157); Daumann, L. J.


Not just a background: pH buffers do interact with lanthanide ions – a Europium(III) case study

Mandal, P.; Kretzschmar, J.(159); Drobot, B.(160)

Involved research facilities

Related publications


Microscopic and spectroscopic bioassociation study of uranium(VI) with an archaeal Halobacterium isolate

Hilpmann, S.(166); Bader, M.; Steudtner, R.(167); Müller, K.(168); Stumpf, T.(169); Cherkouk, A.(170)

Related publications


Endocytosis is a significant contributor to uranium(VI) uptake in tobacco (Nicotiana tabacum) BY-2 cells in phosphate-deficient culture

John, W.(173); Lückel, B.; Matschiavelli, N.(174); Hübner, R.(175); Matschi, S.; Hoehenwarter, W.; Sachs, S.(176)

Involved research facilities

Related publications


New insights into U(VI) sorption onto montmorillonite from batch sorption and spectroscopic studies at increased ionic strength

Stockmann, M.; Fritsch, K.; Bok, F.(181); Marques Fernandes, M.; Baeyens, B.; Steudtner, R.(182); Müller, K.(183); Nebelung, C.; Brendler, V.(184); Stumpf, T.(185); Schmeide, K.(186)


2021

Americium preferred: LanM, a natural lanthanide-binding protein favors an actinide over lanthanides

Singer, H.; Drobot, B.(188); Zeymer, C.(189); Steudtner, R.(190); Daumann, L.(191)


Effect of temperature and cell viability on uranium biomineralization by the uranium mine isolate Penicillium simplicissimum

Schaefer, S.; Steudtner, R.(193); Hübner, R.(194); Krawczyk-Bärsch, E.(195); Merroun, M. L.


High-Gradient Magnetic Separation of Compact Fluorescent Lamp Phosphors: Elucidation of the Removal Dynamics in a Rotary Permanent Magnet Separator

Boelens, P.(197); Lei, Z.(198); Drobot, B.(199); Rudolph, M.(200); Li, Z.; Franzreb, M.; Eckert, K.(201); Lederer, F.(202)


An updated strategic research agenda for the integration of radioecology in the european radiation protection research

Gilbin, R.; Arnold, T.(204); Beresford, N. A.; Berthomieu, C.; Brown, J. E.; de With, G.; Horemans, N.; Madruga, M. J.; Masson, O.; Merroun, M.; Michalik, B.; Muikku, M.; O’Toole, S.; Mrdakovic Popic, J.; Nogueira, P.; Real, A.; Sachs, S.(205); Salbu, B.; Stark, K.; Steiner, M.; Sweek, L.; Vandenhove, H.; Vidal, M.; Vives I. Batlle, J.


Curium(III) speciation in the presence of microbial cell wall components

Moll, H.(207); Barkleit, A.(208); Frost, L.; Raff, J.(209)


Bentonite alteration in batch reactor experiments with and without fertilizing agents: implications for the disposal of radioactive waste

Podlech, C.; Matschiavelli, N.(211); Peltz, M.; Kluge, S.; Arnold, T.(212); Cherkouk, A.(213); Meleshyn, A.; Grathoff, G.; Warr, L. N.


Detecting bacterial cell viability in few μl solutions from impedance measurements on silicon‐based biochips

Bhat, V. J.; Vegesna, S. V.; Kiani, M.; Zhao, X.; Blaschke, D.; Du, N.; Vogel, M.; Kluge, S.; Raff, J.; Hubner, U.; Skorupa, I.; Rebohle, L.; Schmidt, H.

Involved research facilities

Related publications


Quenching Mechanism of Uranyl(VI) by Chloride and Bromide in Aqueous and Non-Aqueous Solutions

Haubitz, T.; Drobot, B.(219); Tsushima, S.(220); Steudtner, R.(221); Stumpf, T.(222); Kumke, M. U.


Spatially resolved Eu(III) environments by chemical microscopy

Vogel, M.(224); Steudtner, R.(225); Fankhänel, T.(226); Raff, J.(227); Drobot, B.(228)

Related publications


Investigation of the structure and dynamics of Gallium binding to high-affinity peptides elucidated by multi-scale simulation, quantum chemistry, NMR and ITC

Taylor, C. J.(231); Schönberger, N.(232); Laníková, A.; Patzschke, M.(233); Drobot, B.(234); Žídek, L.; Lederer, F.(235)

Related publications


Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications

Lopez Fernandez, M.(238); Jroundi, F.; Ruiz. Fresneda, M. A.; Merroun, M. L.


Multisystem combined uranium resistance mechanisms and bioremediation potential of Stenotrophomonas bentonitica BII-R7: Transcriptomics and microscopic study

Pinel-Cabello, M.; Jroundi, F.; Lopez Fernandez, M.(240); Geffers, R.; Jarek, M.; Jauregui, R.; Link, A.; Vílchez-Vargas, R.; Merroun, M. L.


Curium(III) and europium(III) as luminescence probes for plant cell (Brassica napus) interactions with potentially toxic metals

Moll, H.(242); Schmidt, M.(243); Sachs, S.(244)


Gallium-binding peptides as a tool for the sustainable treatment of industrial waste streams

Schönberger, N.(246); Taylor, C. J.(247); Schrader, M.(248); Drobot, B.(249); Matys, S.(250); Lederer, F.(251); Pollmann, K.(252)


Uranium(VI) bioassociation by different fungi – a comparative study into molecular processes

Wollenberg, A.; Drobot, B.; Hübner, R.; Kretzschmar, J.; Freitag, L.; Lehmann, F.; Günther, A.; Stumpf, T.; Raff, J.

Involved research facilities

Related publications


Sorption of Europium on Diatom Biosilica as Model of a “Green” Sorbent for f-Elements

Kammerlander, K. K. K.; Köhler, L.; Huittinen, N. M.(257); Bok, F.(258); Steudtner, R.(259); Oschatz, C.; Vogel, M.(260); Stumpf, T.(261); Brunner, E.


Uranium(VI) toxicity in tobacco BY-2 cell suspension culture - a physiological study

Rajabi, F.; Jessat, J.(263); Garimella, J. N.; Bok, F.(264); Steudtner, R.(265); Stumpf, T.(266); Sachs, S.(267)


Bioassociation of U(VI) and Eu(III) by plant (Brassica napus) suspension cell cultures – A spectroscopic investigation

Jessat, J.(269); Sachs, S.(270); Moll, H.(271); John, W.(272); Steudtner, R.(273); Hübner, R.(274); Bok, F.(275); Stumpf, T.(276)


Uranium and neptunium retention mechanisms in Gallionella ferruginea / ferrihydrite systems for remediation purposes

Krawczyk-Bärsch, E.(278); Scheinost, A. C.; Roßberg, A.; Müller, K.; Lehrich, J.; Bok, F.(279); Hallbeck, L.; Schmeide, K.(280)

Involved research facilities

Related publications


Dimeric and Trimeric Uranyl(VI)–Citrate Complexes in Aqueous Solution

Kretzschmar, J.(284); Tsushima, S.(285); Lucks, C.; Jäckel, E.; Meyer, R.; Steudtner, R.(286); Müller, K.(287); Roßberg, A.; Schmeide, K.(288); Brendler, V.(289)

Involved research facilities

Related publications


2020

Presence of Bradyrhizobium sp. under continental conditions in Central Europe

Griebsch, A.; Matschiavelli, N.(295); Lewandowska, S.; Schmidtke, K.


An integrated approach combining soil profile, records and tree ring analysis to identify the origin of environmental contamination in a former uranium mine (Rophin, France)

Martin, A.; Hassan-Loni, Y.; Fichtner, A.; Péron, O.; David, K.; Chardon, P.; Larrue, S.; Gourgiotis, A.; Sachs, S.(297); Arnold, T.(298); Grambow, B.; Stumpf, T.(299); Montavon, G.


Trimeric uranyl(VI)–citrate forms Na+, Ca2+, and La3+ sandwich complexes in aqueous solution

Kretzschmar, J.(301); Tsushima, S.(302); Drobot, B.(303); Steudtner, R.(304); Schmeide, K.(305); Stumpf, T.(306)

Related publications


Temperature-dependent luminescence spectroscopic investigations of U(VI) complexation with the halides F- and Cl-

Demnitz, M.(310); Hilpmann, S.(311); Lösch, H.; Bok, F.(312); Steudtner, R.(313); Patzschke, M.(314); Stumpf, T.(315); Huittinen, N. M.(316)


Disturbing-free determination of yeast concentration in DI water and in glucose using impedance biochips

Kiani, M.; Du, N.; Vogel, M.; Raff, J.; Hübner, U.; Skorupa, I.; Bürger, D.; Schulz, S. E.; Schmidt, O. G.; Blaschke, D.; Schmidt, H.


Molecular binding of Eu(III)/Cm(III) by Stenotrophomonas bentonitica and its impact on the safety of future geodisposal of radioactive waste

Ruiz-Fresneda, M. A.; Lopez Fernandez, M.(319); Martinez-Moreno, M. F.; Cherkouk, A.(320); Ju-Nam, Y.; Ojeda, J. J.; Moll, H.(321); Merroun, M. L.


Interaction of curium(III) with surface-layer proteins from Lysinibacillus sphaericus JG-A12

Moll, H.(323); Lehmann, F.; Raff, J.(324)


Signatures of Technetium Oxidation States: A New Approach

Bauters, S.(326); Scheinost, A.(327); Schmeide, K.(328); Weiß, S.(329); Dardenne, K.(330); Rothe, J.; Mayordomo, N.(331); Steudtner, R.(332); Stumpf, T.(333); Abram, U.; Butorin, S.(334); Kvashnina, K.(335)

Involved research facilities

Related publications


Temperature‒dependent luminescence spectroscopic and mass spectrometric investigations of U(VI) complexation with aqueous silicates in the acidic pH‒range

Lösch, H.; Raiwa, M.; Jordan, N.(339); Steppert, M.; Steudtner, R.(340); Stumpf, T.(341); Huittinen, N. M.(342)


Plant cell (Brassica napus) response to europium(III) and uranium(VI) exposure

Moll, H.(344); Sachs, S.(345); Geipel, G.


Uranium(VI) Complexes of Glutathione Disulfide Forming in Aqueous Solution

Kretzschmar, J.(347); Strobel, A.; Haubitz, T.; Drobot, B.(348); Steudtner, R.(349); Barkleit, A.(350); Brendler, V.(351); Stumpf, T.(352)

Related publications


2019

Human exposure to uranium in South African gold mining areas using barber-based hair sampling

Winde, F.; Geipel, G.; Espina, C.; Schüz, J.


How do actinyls interact with hyperphosphorylated yolk protein Phosvitin ?

Kumar, S.; Creff, G.; Hennig, C.; Rossberg, A.; Steudtner, R.; Raff, J.; Vidaud, C.; Oberhaensli, F. R.; Bottein, Y.; Den Auwer, C.

Involved research facilities

Related publications


The year-long development of microorganisms in uncompacted Bavarian bentonite slurries at 30 °C and 60 °C

Matschiavelli, N.; Kluge, S.; Podlech, C.; Standhaft, D.; Grathoff, G.; Ikeda-Ohno, A.; Warr, L.; Chukharkina, A.; Arnold, T.; Cherkouk, A.


Chromatopanning for the identification of gallium binding peptides

Schönberger, N.; Braun, R.; Matys, S.; Lederer, F. L.; Lehmann, F.; Flemming, K.; Pollmann, K.


Thermodynamic and structural studies on the Ln(III)/An(III) malate complexation

Taube, F.; Drobot, B.; Roßberg, A.; Foerstendorf, H.(361); Acker, M.; Patzschke, M.; Trumm, M.; Taut, S.; Stumpf, T.

Involved research facilities

Related publications


Association of Eu(III) and Cm(III) onto an extremely halophilic archaeon

Bader, M.; Moll, H.(365); Steudtner, R.(366); Lösch, H.; Drobot, B.; Stumpf, T.(367); Cherkouk, A.(368)


Microbial diversity in an arid, naturally saline environment

Bachran, M.; Kluge, S.; Lopez-Fernandez, M.; Cherkouk, A.


Synthesis, 18F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide

Löser, R.(371); Bader, M.; Kuchar, M.(372); Wodtke, R.(373); Lenk, J.; Wodtke, J.; Kuhne, K.; Bergmann, R.(374); Haase-Kohn, C.(375); Urbanová, M.; Steinbach, J.; Pietzsch, J.(376)


Reversible pH-dependent curium(III) biosorption by the bentonite yeast isolate Rhodotorula mucilaginosa BII-R8

Lopez-Fernandez, M.; Moll, H.; Merroun, M. L.


Cm3+/ Eu3+ Induced Structural, Mechanistic and Functional Implications for Calmodulin

Drobot, B.(379); Schmidt, M.(380); Mochizuki, Y.(381); Abe, T.; Okuwaki, K.; Brulfert, F.; Falke, S.(382); Samsonov, S.(383); Komeiji, Y.(384); Betzel, C.(385); Stumpf, T.; Raff, J.(386); Tsushima, S.(387)


S-layer protein-AuNP systems for the colorimetric detection of metal and metalloid ions in water

Jung, J.; Lakatos, M.; Bengs, S.; Matys, S.; Raff, J.; Blüher, A.; Cuniberti, G.


2018

Depth and Dissolved Organic Carbon Shape Microbial Communities in Surface Influenced but Not Ancient Saline Terrestrial Aquifers

Lopez-Fernandez, M.; Åström, M.; Bertilsson, S.; Dopson, M.


Microbial Community and Metabolic Activity in Thiocyanate Degrading Low Temperature Microbial Fuel Cells

Ni, G.; Canizales, S.; Broman, E.; Simone, D.; Palwai, V. R.; Lundin, D.; Lopez-Fernandez, M.; Sleutels, T.; Dopson, M.


Metatranscriptomes Reveal That All Three Domains of Life Are Active but Are Dominated by Bacteria in the Fennoscandian Crystalline Granitic Continental Deep Biosphere

Lopez-Fernandez, M.; Simone, D.; Wu, X.; Soler, L.; Nilsson, E.; Holmfeldt, K.; Lantz, H.; Bertilsson, S.; Dopson, M.


Investigation of viable taxa in the deep terrestrial biosphere suggests high rates of nutrient recycling

Lopez-Fernandez, M.; Broman, E.; Turner, S.; Wu, X.; Bertilsson, S.; Dopson, M.


Impact of Haloarchaea on speciation of uranium – a multi-spectroscopic approach

Bader, M.; Rossberg, A.; Steudtner, R.; Drobot, B.; Großmann, K.; Schmidt, M.; Musat, N.; Stumpf, T.; Ikeda-Ohno, A.; Cherkouk, A.

Involved research facilities

Related publications


Ultrafast transient absorption spectroscopy of UO22+ and [UO2Cl]+

Haubitz, T.; Tsushima, S.; Steudtner, R.; Drobot, B.; Geipel, G.; Stumpf, T.; Kumke, M. U.


Effect of U(VI) aqueous speciation on the binding of uranium by the cell surface of Rhodotorula mucilaginosa, a natural yeast isolate from bentonites

Lopez-Fernandez, M.; Romero-Gonzalez, M.; Günther, A.; Solari, P. L.; Merroun, M. L.


Metabolism-dependent bioaccumulation of uranium by Rhodosporidium toruloides isolated from the flooding water of a former uranium mine

Gerber, U.; Hübner, R.; Rossberg, A.; Krawczyk-Bärsch, E.; Merroun, M. L.

Involved research facilities

Related publications


Removal and recovery of uranium by waste digested activated sludge in fed-batch stirred tank reactor

Jain, R.; Peräniemi, S.; Jordan, N.(402); Vogel, M.; Weiss, S.; Foerstendorf, H.; Lakaniemi, A. M.


Bio-recycling of metals: Recycling of technical products using biological applications

Pollmann, K.; Kutschke, S.; Matys, S.; Raff, J.; Hlawacek, G.; Lederer, F. L.


Multidisciplinary characterization of U(VI) sequestration by Acidovorax facilis for bioremediation purposes

Krawczyk-Bärsch, E.; Gerber, U.; Müller, K.; Moll, H.; Rossberg, A.; Steudtner, R.; Merroun, M.

Involved research facilities

Related publications


Comparative analysis of uranium bioassociation with halophilic bacteria and archaea

Bader, M.; Müller, K.; Foerstendorf, H.; Schmidt, M.; Simmons, K.; Swanson, J. S.; Reed, D. T.; Stumpf, T.; Cherkouk, A.


Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles

Vogel, M.; Fischer, S.; Maffert, A.; Hübner, R.; Scheinost, A.; Franzen, C.; Steudtner, R.

Involved research facilities

Related publications



Content from Sidebar

Contact

Dr. Johannes Raff

Head Biogeochemistry
j.raffAthzdr.de
Phone: +49 351 260 2951

Social Media

  Twitter-Logo(414)


URL of this article
https://www.hzdr.de/db/Cms?pOid=50487


Links of the content

(1) https://orcid.org/0000-0001-7362-1850
(2) https://orcid.org/0000-0002-3908-2539
(3) https://orcid.org/0000-0003-2416-6438
(4) https://doi.org/10.1016%2Fj.advwatres.2024.104761
(5) https://orcid.org/0000-0003-3540-5422
(6) https://orcid.org/0009-0007-6192-9859
(7) https://orcid.org/0000-0003-1245-0466
(8) https://orcid.org/0000-0003-1370-1001
(9) https://orcid.org/0000-0002-0520-3611
(10) https://orcid.org/0000-0002-4505-3865
(11) https://orcid.org/0000-0002-3103-9587
(12) https://www.hzdr.de/publications/Publ-39228
(13) https://doi.org/10.14278/rodare.3027
(14) https://doi.org/10.3390%2Fmin14080754
(15) https://orcid.org/0000-0003-2392-6781
(16) https://orcid.org/0000-0002-5760-4150
(17) https://orcid.org/0000-0003-1370-1001
(18) https://orcid.org/0000-0002-3103-9587
(19) https://orcid.org/0000-0003-1245-0466
(20) https://orcid.org/0000-0002-4505-3865
(21) https://orcid.org/0000-0003-3241-3443
(22) https://orcid.org/0000-0002-9995-0879
(23) https://doi.org/10.1016%2Fj.scitotenv.2024.171374
(24) https://orcid.org/0000-0001-9381-1280
(25) https://orcid.org/0000-0001-8249-0506
(26) https://orcid.org/0000-0003-3588-6676
(27) https://orcid.org/0000-0002-6885-2619
(28) https://orcid.org/0000-0003-1245-0466
(29) https://orcid.org/0000-0002-3103-9587
(30) https://orcid.org/0000-0002-4505-3865
(31) https://orcid.org/0000-0002-0520-3611
(32) https://orcid.org/0000-0003-4553-5976
(33) https://doi.org/10.1007%2Fs11356%2D023%2D31530%2D4
(34) https://orcid.org/0000-0002-3103-9587
(35) https://www.hzdr.de/publications/Publ-38214
(36) https://doi.org/10.1039%2Fd3cc01341c
(37) https://orcid.org/0000-0002-0038-1638
(38) https://orcid.org/0000-0002-9930-2329
(39) https://orcid.org/0000-0002-0520-3611
(40) https://doi.org/10.1016%2Fj.apgeochem.2023.105829
(41) https://orcid.org/0009-0009-1358-3560
(42) https://orcid.org/0000-0002-5203-0776
(43) https://orcid.org/0000-0003-4846-1271
(44) https://orcid.org/0000-0002-4505-3865
(45) https://orcid.org/0000-0003-1245-0466
(46) https://orcid.org/0000-0001-5042-8134
(47) https://orcid.org/0000-0003-1906-3186
(48) https://doi.org/10.1021%2Facs.inorgchem.3c01983
(49) https://orcid.org/0000-0001-7906-6851
(50) https://orcid.org/0000-0003-0620-2853
(51) https://orcid.org/0000-0003-1245-0466
(52) https://orcid.org/0000-0002-5200-6928
(53) https://orcid.org/0000-0002-4505-3865
(54) https://orcid.org/0000-0002-3908-2539
(55) https://www.hzdr.de/publications/Publ-37168
(56) https://doi.org/10.14278/rodare.2357
(57) https://doi.org/10.1016%2Fj.ecoenv.2023.115474
(58) https://orcid.org/0000-0002-9995-0879
(59) https://orcid.org/0000-0002-8334-9317
(60) https://orcid.org/0000-0002-4520-6147
(61) https://orcid.org/0000-0003-1245-0466
(62) https://orcid.org/0000-0001-5042-8134
(63) https://doi.org/10.3390%2Fmolecules28114469
(64) https://orcid.org/0000-0003-3540-5422
(65) https://orcid.org/0000-0003-1370-1001
(66) https://orcid.org/0000-0001-9097-9299
(67) https://orcid.org/0000-0002-0520-3611
(68) https://orcid.org/0000-0002-4505-3865
(69) https://orcid.org/0000-0003-1245-0466
(70) https://orcid.org/0000-0002-3103-9587
(71) https://doi.org/10.1039%2FD3AN00741C
(72) https://orcid.org/0000-0001-5042-8134
(73) https://orcid.org/0000-0003-3783-6429
(74) https://orcid.org/0000-0001-7514-8307
(75) https://orcid.org/0000-0002-3696-8369
(76) https://www.hzdr.de/publications/Publ-36794
(77) https://doi.org/10.3389%2Ffmicb.2023.1194916
(78) https://orcid.org/0000-0001-9097-9299
(79) https://orcid.org/0000-0002-8752-5824
(80) https://doi.org/10.3390%2Fmicroorganisms11030584
(81) https://orcid.org/0009-0007-3878-0734
(82) https://orcid.org/0000-0003-1245-0466
(83) https://orcid.org/0000-0002-4520-6147
(84) https://orcid.org/0000-0003-3241-3443
(85) https://orcid.org/0000-0002-6859-8366
(86) https://orcid.org/0000-0002-4505-3865
(87) https://orcid.org/0000-0001-5042-8134
(88) https://doi.org/10.3390%2Fmolecules28124881
(89) https://orcid.org/0000-0001-7906-6851
(90) https://orcid.org/0000-0002-3103-9587
(91) https://orcid.org/0000-0003-1245-0466
(92) https://orcid.org/0000-0002-5200-6928
(93) https://orcid.org/0000-0002-6885-2619
(94) https://orcid.org/0000-0001-5087-0133
(95) https://orcid.org/0000-0001-5484-8857
(96) https://orcid.org/0000-0003-4447-4542
(97) https://orcid.org/0000-0002-4505-3865
(98) https://orcid.org/0000-0002-3908-2539
(99) https://www.hzdr.de/publications/Publ-34974
(100) https://doi.org/10.1016%2Fj.scitotenv.2023.162593
(101) https://orcid.org/0000-0002-3103-9587
(102) https://orcid.org/0000-0003-1245-0466
(103) https://www.hzdr.de/publications/Publ-37956
(104) https://doi.org/10.1002%2Fanie.202303669
(105) https://orcid.org/0000-0003-4269-068X
(106) https://orcid.org/0000-0003-2150-8711
(107) https://orcid.org/0000-0003-0620-2853
(108) https://orcid.org/0000-0003-1370-1001
(109) https://orcid.org/0000-0002-3103-9587
(110) https://orcid.org/0000-0003-1245-0466
(111) https://orcid.org/0000-0002-5200-6928
(112) https://orcid.org/0000-0002-4505-3865
(113) https://orcid.org/0000-0001-9097-9299
(114) https://doi.org/10.1016%2Fj.ecoenv.2023.114741
(115) https://orcid.org/0000-0001-9097-9299
(116) https://doi.org/10.1016%2Fj.jtemb.2023.127141
(117) https://orcid.org/0000-0002-9426-647X
(118) https://orcid.org/0000-0003-4339-2414
(119) https://orcid.org/0000-0002-4885-799X
(120) https://orcid.org/0000-0003-1245-0466
(121) https://orcid.org/0000-0002-3696-8369
(122) https://orcid.org/0000-0002-0452-3242
(123) https://doi.org/10.1016%2Fj.jmmm.2022.169956
(124) https://orcid.org/0000-0002-3103-9587
(125) https://orcid.org/0000-0003-1245-0466
(126) https://www.hzdr.de/publications/Publ-35622
(127) https://doi.org/10.1016%2Fj.chemosphere.2022.137252
(128) https://orcid.org/0000-0003-3783-6429
(129) https://doi.org/10.1007%2Fs10482%2D022%2D01768%2Dy
(130) https://orcid.org/0000-0002-8412-3328
(131) https://orcid.org/0000-0002-4520-6147
(132) https://orcid.org/0000-0002-3103-9587
(133) https://orcid.org/0000-0003-1245-0466
(134) https://www.hzdr.de/publications/Publ-34792
(135) https://doi.org/10.1039%2Fd2qi00933a
(136) https://orcid.org/0000-0003-1245-0466
(137) https://orcid.org/0000-0002-3103-9587
(138) https://orcid.org/0000-0002-5200-6928
(139) https://orcid.org/0000-0002-4505-3865
(140) https://orcid.org/0000-0002-0520-3611
(141) https://doi.org/10.1016%2Fj.scitotenv.2022.158160
(142) https://doi.org/10.1016%2Fj.jhazmat.2022.129376
(143) https://orcid.org/0000-0003-4269-068X
(144) https://orcid.org/0000-0003-0620-2853
(145) https://orcid.org/0000-0003-2150-8711
(146) https://orcid.org/0000-0002-5200-6928
(147) https://orcid.org/0000-0001-5042-8134
(148) https://orcid.org/0000-0002-3103-9587
(149) https://orcid.org/0000-0003-1245-0466
(150) https://orcid.org/0000-0002-4505-3865
(151) https://orcid.org/0000-0001-9097-9299
(152) https://doi.org/10.1016%2Fj.jhazmat.2022.129520
(153) https://orcid.org/0000-0001-8005-1657
(154) https://doi.org/10.1038%2Fs41557%2D022%2D00890%2D8
(155) https://orcid.org/0000-0001-5042-8134
(156) https://orcid.org/0000-0002-3103-9587
(157) https://orcid.org/0000-0003-1245-0466
(158) https://doi.org/10.1039%2FD2CP00311B
(159) https://orcid.org/0000-0001-5042-8134
(160) https://orcid.org/0000-0003-1245-0466
(161) https://doi.org/10.17815/jlsrf-2-58
(162) https://doi.org/10.17815/jlsrf-2-58
(163) https://www.hzdr.de/publications/Publ-33100
(164) https://doi.org/10.14278/rodare.1148
(165) https://doi.org/10.1007%2Fs00775%2D022%2D01930%2Dx
(166) https://orcid.org/0000-0001-7906-6851
(167) https://orcid.org/0000-0002-3103-9587
(168) https://orcid.org/0000-0002-0038-1638
(169) https://orcid.org/0000-0002-4505-3865
(170) https://orcid.org/0000-0002-3908-2539
(171) https://www.hzdr.de/publications/Publ-33002
(172) https://doi.org/10.1371%2Fjournal.pone.0262275
(173) https://orcid.org/0000-0003-2150-8711
(174) https://orcid.org/0000-0001-5038-0273
(175) https://orcid.org/0000-0002-5200-6928
(176) https://orcid.org/0000-0001-9097-9299
(177) https://doi.org/10.17815/jlsrf-3-159
(178) https://doi.org/10.17815/jlsrf-3-159
(179) https://www.hzdr.de/publications/Publ-32913
(180) https://doi.org/10.1016%2Fj.scitotenv.2022.153700
(181) https://orcid.org/0000-0002-6885-2619
(182) https://orcid.org/0000-0002-3103-9587
(183) https://orcid.org/0000-0002-0038-1638
(184) https://orcid.org/0000-0001-5570-4177
(185) https://orcid.org/0000-0002-4505-3865
(186) https://orcid.org/0000-0002-6859-8366
(187) https://doi.org/10.1016%2Fj.scitotenv.2021.150653
(188) https://orcid.org/0000-0003-1245-0466
(189) https://orcid.org/0000-0001-7138-381X
(190) https://orcid.org/0000-0002-3103-9587
(191) https://orcid.org/0000-0003-2197-136X
(192) https://doi.org/10.1039%2FD1SC04827A
(193) https://orcid.org/0000-0002-3103-9587
(194) https://orcid.org/0000-0002-5200-6928
(195) https://orcid.org/0000-0001-8249-0506
(196) https://doi.org/10.3389%2Ffmicb.2021.802926
(197) https://orcid.org/0000-0002-9426-647X
(198) https://orcid.org/0000-0001-7996-5603
(199) https://orcid.org/0000-0003-1245-0466
(200) https://orcid.org/0000-0002-5374-6135
(201) https://orcid.org/0000-0002-9671-8628
(202) https://orcid.org/0000-0002-0452-3242
(203) https://doi.org/10.3390%2Fmin11101116
(204) https://orcid.org/0000-0003-2775-3494
(205) https://orcid.org/0000-0001-9097-9299
(206) https://doi.org/10.1016%2Fj.jenvrad.2021.106697
(207) https://orcid.org/0000-0003-0620-2853
(208) https://orcid.org/0000-0003-3241-3443
(209) https://orcid.org/0000-0002-0520-3611
(210) https://doi.org/10.1016%2Fj.ecoenv.2021.112887
(211) https://orcid.org/0000-0001-5038-0273
(212) https://orcid.org/0000-0003-2775-3494
(213) https://orcid.org/0000-0002-3908-2539
(214) https://doi.org/10.3390%2Fmin11090932
(215) https://doi.org/10.17815/jlsrf-3-159
(216) https://doi.org/10.17815/jlsrf-3-159
(217) https://www.hzdr.de/publications/Publ-32799
(218) https://doi.org/10.3390%2Fijms22073541
(219) https://orcid.org/0000-0003-1245-0466
(220) https://orcid.org/0000-0002-4520-6147
(221) https://orcid.org/0000-0002-3103-9587
(222) https://orcid.org/0000-0002-4505-3865
(223) https://doi.org/10.1021%2Facs.jpca.1c02487
(224) https://orcid.org/0000-0003-1370-1001
(225) https://orcid.org/0000-0002-3103-9587
(226) https://orcid.org/0000-0002-0105-6546
(227) https://orcid.org/0000-0002-0520-3611
(228) https://orcid.org/0000-0003-1245-0466
(229) https://www.hzdr.de/publications/Publ-32350
(230) https://doi.org/10.1039%2FD1AN01449H
(231) https://orcid.org/0000-0003-2535-9514
(232) https://orcid.org/0000-0003-1117-5167
(233) https://orcid.org/0000-0003-3125-1278
(234) https://orcid.org/0000-0003-1245-0466
(235) https://orcid.org/0000-0002-0452-3242
(236) https://www.hzdr.de/publications/Publ-32196
(237) https://doi.org/10.1039%2Fd1cp00356a
(238) https://orcid.org/0000-0003-3588-6676
(239) https://doi.org/10.1111%2F1751%2D7915.13718
(240) https://orcid.org/0000-0003-3588-6676
(241) https://doi.org/10.1016%2Fj.jhazmat.2020.123858
(242) https://orcid.org/0000-0003-0620-2853
(243) https://orcid.org/0000-0002-8419-0811
(244) https://orcid.org/0000-0001-9097-9299
(245) https://doi.org/10.1016%2Fj.jhazmat.2021.125251
(246) https://orcid.org/0000-0003-1117-5167
(247) https://orcid.org/0000-0003-2535-9514
(248) https://orcid.org/0000-0001-6855-8068
(249) https://orcid.org/0000-0003-1245-0466
(250) https://orcid.org/0000-0002-9106-3562
(251) https://orcid.org/0000-0002-0452-3242
(252) https://orcid.org/0000-0002-3696-8369
(253) https://doi.org/10.1016%2Fj.jhazmat.2021.125366
(254) https://doi.org/10.17815/jlsrf-3-159
(255) https://doi.org/10.17815/jlsrf-3-159
(256) https://doi.org/10.1016%2Fj.jhazmat.2021.125068
(257) https://orcid.org/0000-0002-9930-2329
(258) https://orcid.org/0000-0002-6885-2619
(259) https://orcid.org/0000-0002-3103-9587
(260) https://orcid.org/0000-0003-1370-1001
(261) https://orcid.org/0000-0002-4505-3865
(262) https://doi.org/10.1016%2Fj.apgeochem.2020.104823
(263) https://orcid.org/0000-0003-4269-068X
(264) https://orcid.org/0000-0002-6885-2619
(265) https://orcid.org/0000-0002-3103-9587
(266) https://orcid.org/0000-0002-4505-3865
(267) https://orcid.org/0000-0001-9097-9299
(268) https://doi.org/10.1016%2Fj.ecoenv.2020.111883
(269) https://orcid.org/0000-0003-4269-068X
(270) https://orcid.org/0000-0001-9097-9299
(271) https://orcid.org/0000-0003-0620-2853
(272) https://orcid.org/0000-0003-2150-8711
(273) https://orcid.org/0000-0002-3103-9587
(274) https://orcid.org/0000-0002-5200-6928
(275) https://orcid.org/0000-0002-6885-2619
(276) https://orcid.org/0000-0002-4505-3865
(277) https://doi.org/10.1021%2Facs.est.0c05881
(278) https://orcid.org/0000-0001-8249-0506
(279) https://orcid.org/0000-0002-6885-2619
(280) https://orcid.org/0000-0002-6859-8366
(281) https://doi.org/10.1107/S1600577520014265
(282) https://doi.org/10.1107/S1600577520014265
(283) https://doi.org/10.1007%2Fs11356%2D020%2D09563%2Dw
(284) https://orcid.org/0000-0001-5042-8134
(285) https://orcid.org/0000-0002-4520-6147
(286) https://orcid.org/0000-0002-3103-9587
(287) https://orcid.org/0000-0002-0038-1638
(288) https://orcid.org/0000-0002-6859-8366
(289) https://orcid.org/0000-0001-5570-4177
(290) https://doi.org/10.1107/S1600577520014265
(291) https://www.hzdr.de/publications/Publ-32805
(292) https://doi.org/10.1107/S1600577520014265
(293) https://www.hzdr.de/publications/Publ-35617
(294) https://doi.org/10.1021%2Facs.inorgchem.1c00522
(295) https://orcid.org/0000-0001-5038-0273
(296) https://doi.org/10.3390%2Fagriculture10100446
(297) https://orcid.org/0000-0001-9097-9299
(298) https://orcid.org/0000-0003-2775-3494
(299) https://orcid.org/0000-0002-4505-3865
(300) https://doi.org/10.1016%2Fj.scitotenv.2020.141295
(301) https://orcid.org/0000-0001-5042-8134
(302) https://orcid.org/0000-0002-4520-6147
(303) https://orcid.org/0000-0003-1245-0466
(304) https://orcid.org/0000-0002-3103-9587
(305) https://orcid.org/0000-0002-6859-8366
(306) https://orcid.org/0000-0002-4505-3865
(307) https://www.hzdr.de/publications/Publ-32805
(308) https://www.hzdr.de/publications/Publ-35617
(309) https://doi.org/10.1039%2FD0CC05460G
(310) https://orcid.org/0000-0002-4137-1057
(311) https://orcid.org/0000-0001-7906-6851
(312) https://orcid.org/0000-0002-6885-2619
(313) https://orcid.org/0000-0002-3103-9587
(314) https://orcid.org/0000-0003-3125-1278
(315) https://orcid.org/0000-0002-4505-3865
(316) https://orcid.org/0000-0002-9930-2329
(317) https://doi.org/10.1039%2FD0DT00646G
(318) https://doi.org/10.3390%2Fbios10010007
(319) https://orcid.org/0000-0003-3588-6676
(320) https://orcid.org/0000-0002-3908-2539
(321) https://orcid.org/0000-0003-0620-2853
(322) https://doi.org/10.1021%2Facs.est.0c02418
(323) https://orcid.org/0000-0003-0620-2853
(324) https://orcid.org/0000-0002-0520-3611
(325) https://doi.org/10.1016%2Fj.colsurfb.2020.110950
(326) https://orcid.org/0000-0001-5484-8857
(327) https://orcid.org/0000-0002-6608-5428
(328) https://orcid.org/0000-0002-6859-8366
(329) https://orcid.org/0000-0003-4339-2414
(330) https://orcid.org/0000-0003-1286-1855
(331) https://orcid.org/0000-0003-4433-9500
(332) https://orcid.org/0000-0002-3103-9587
(333) https://orcid.org/0000-0002-4505-3865
(334) https://orcid.org/0000-0003-3242-5305
(335) https://orcid.org/0000-0003-4447-4542
(336) https://doi.org/10.1107/S1600577520014265
(337) https://doi.org/10.1107/S1600577520014265
(338) https://doi.org/10.1039%2FD0CC03905E
(339) https://orcid.org/0000-0002-4625-1580
(340) https://orcid.org/0000-0002-3103-9587
(341) https://orcid.org/0000-0002-4505-3865
(342) https://orcid.org/0000-0002-9930-2329
(343) https://doi.org/10.1016%2Fj.envint.2019.105425
(344) https://orcid.org/0000-0003-0620-2853
(345) https://orcid.org/0000-0001-9097-9299
(346) https://doi.org/10.1007%2Fs11356%2D020%2D09525%2D2
(347) https://orcid.org/0000-0001-5042-8134
(348) https://orcid.org/0000-0003-1245-0466
(349) https://orcid.org/0000-0002-3103-9587
(350) https://orcid.org/0000-0003-3241-3443
(351) https://orcid.org/0000-0001-5570-4177
(352) https://orcid.org/0000-0002-4505-3865
(353) https://www.hzdr.de/publications/Publ-35617
(354) https://doi.org/10.1021%2Facs.inorgchem.9b02921
(355) https://doi.org/10.1371%2Fjournal.pone.0219059
(356) https://doi.org/10.1107/S1600577520014265
(357) https://doi.org/10.1107/S1600577520014265
(358) https://doi.org/10.1002%2Fchem.201902015
(359) https://doi.org/10.1021%2Facs.est.9b02670
(360) https://doi.org/10.1016%2Fj.chroma.2019.04.037
(361) https://orcid.org/0000-0002-8334-9317
(362) https://doi.org/10.1107/S1600577520014265
(363) https://doi.org/10.1107/S1600577520014265
(364) https://doi.org/10.1021%2Facs.inorgchem.8b02474
(365) https://orcid.org/0000-0003-0620-2853
(366) https://orcid.org/0000-0002-3103-9587
(367) https://orcid.org/0000-0002-4505-3865
(368) https://orcid.org/0000-0002-3908-2539
(369) https://doi.org/10.1007%2Fs11356%2D019%2D04165%2D7
(370) https://doi.org/10.1007%2Fs00248%2D018%2D1301%2D2
(371) https://orcid.org/0000-0003-1531-7601
(372) https://orcid.org/0000-0001-7329-2049
(373) https://orcid.org/0000-0001-7462-7111
(374) https://orcid.org/0000-0002-8733-4286
(375) https://orcid.org/0000-0002-5032-5095
(376) https://orcid.org/0000-0002-1610-1493
(377) https://doi.org/10.1007%2Fs00726%2D018%2D2657%2D9
(378) https://doi.org/10.1016%2Fj.jhazmat.2018.06.054
(379) https://orcid.org/0000-0003-1245-0466
(380) https://orcid.org/0000-0002-8419-0811
(381) https://orcid.org/0000-0002-7310-5183
(382) https://orcid.org/0000-0003-3409-1791
(383) https://orcid.org/0000-0002-5166-4849
(384) https://orcid.org/0000-0002-9708-6175
(385) https://orcid.org/0000-0002-3879-5019
(386) https://orcid.org/0000-0002-0520-3611
(387) https://orcid.org/0000-0002-4520-6147
(388) https://doi.org/10.1039%2FC9CP03750K
(389) https://doi.org/10.1016%2Fj.colsurfb.2019.06.014
(390) https://doi.org/10.3389%2Ffmicb.2018.02880
(391) https://doi.org/10.3389%2Ffmicb.2018.02308
(392) https://doi.org/10.1128%2FmBio.01792%2D18
(393) https://doi.org/10.1093%2Ffemsec%2Ffiy121
(394) https://doi.org/10.1107/S1600577520014265
(395) https://doi.org/10.1107/S1600577520014265
(396) https://doi.org/10.1021%2Facs.est.8b02667
(397) https://doi.org/10.1021%2Facs.jpca.8b05567
(398) https://doi.org/10.1016%2Fj.chemosphere.2018.02.055
(399) https://doi.org/10.1107/S1600577520014265
(400) https://doi.org/10.1107/S1600577520014265
(401) https://doi.org/10.1371%2Fjournal.pone.0201903
(402) https://orcid.org/0000-0002-4625-1580
(403) https://doi.org/10.1016%2Fj.watres.2018.05.042
(404) https://doi.org/10.1016%2Fj.biotechadv.2018.03.006
(405) https://doi.org/10.1107/S1600577520014265
(406) https://doi.org/10.1107/S1600577520014265
(407) https://doi.org/10.1016%2Fj.jhazmat.2017.12.030
(408) https://doi.org/10.1371%2Fjournal.pone.0190953
(409) https://doi.org/10.17815/jlsrf-3-159
(410) https://doi.org/10.1107/S1600577520014265
(411) https://doi.org/10.17815/jlsrf-3-159
(412) https://doi.org/10.1107/S1600577520014265
(413) https://doi.org/10.1016%2Fj.jhazmat.2017.10.034
(414) https://twitter.com/biogeochem_HZDR