Ausgewählte Veröffentlichungen

2024

Efficient density functional theory directed identification of siderophores with increased selectivity towards indium and germanium

Hintersatz, C.(1); Tsushima, S.(2); Kaufer, T.; Kretzschmar, J.(3); Thewes, A.; et al. (7 authors)(4)

  • Open Access Logo Journal of Hazardous Materials (2024)

Selective recovery of Cu from copper mold production waste by organic ligands

Choudhary, S.; Dhiman, S.; Hintersatz, C.; Matys, S.; Kutschke, S.(6); et al. (9 authors)(7)


Towards tailoring hydrophobic interaction with uranyl(VI) oxygen for C-H activation

Tsushima, S.(11); Kretzschmar, J.(12); Doi, H.; Okuwaki, K.(13); Kaneko, M.(14); et al. (7 authors)(15)


Cold denaturation of DNA origami nanostructures

Dornbusch, D.(19); Hanke, M.; Tomm, E.; Grundmeier, G.; Keller, A.; et al. (7 authors)(20)


2023

Large-Scale Formation of DNA Origami Lattices on Silicon

Tapio, K.(24); Kielar, C.(25); Parikka, J. M.(26); Keller, A.(27); Järvinen, H.(28); et al. (7 authors)(29)


Molecular Adhesion of a Pilus-derived Peptide Involved in Pseudomonas aeruginosa Biofilm Formation on non-polar ZnO Surfaces

Prüßner, T.; Meinderink, D.(33); Zhu, S.; Orive, A. G.(34); Kielar, C.(35); et al. (9 authors)(36)


Fate of Oxidation States at Actinide Centers in Redox-Active Ligand Systems Governed by Energy Levels of 5f Orbitals

Takeyama, T.(42); Tsushima, S.(43); Gericke, R.(44); Kaden, P.(45); März, J.(46); et al. (6 authors)(47)


Superstructure-dependent stability of DNA origami nanostructures in the presence of chaotropic denaturants

Hanke, M.; Dornbusch, D.(50); Tomm, E.; Grundmeier, G.; Fahmy, K.; et al. (6 authors)(51)


Exploring Antibacterial Activity and Bacterial-Mediated Allotropic Transition of Differentially Coated Selenium Nanoparticles

Ruiz-Fresneda, M. A.; Schaefer, S.; Hübner, R.(53); Fahmy, K.(54); Merroun, M. L.


Interaction between the transferrin protein and plutonium (and thorium), what’s new?

Zurita, C.; Tsushima, S.(56); Lorenzo Solari, P.; Menut, D.; Dourdain, S.; et al. (8 authors)(57)


Europium(III) Meets Etidronic Acid (HEDP): a Coordination Study Combining Spectroscopic, Spectrometric, and Quantum Chemical Methods

Heller, A.(59); Senwitz, C.; Foerstendorf, H.(60); Tsushima, S.(61); Holtmann, L.; et al. (7 authors)(62)


Special Issue “Advances in Monitoring Metabolic Activities of Microorganisms by Calorimetry”

Matulis, D.; Wadsö, L.; Fahmy, K.(66)


Distinct Effects of Chemical Toxicity and Radioactivity on Metabolic Heat of Cultured Cells Revealed by “Isotope-Editing”

Oertel, J.; Sachs, S.(68); Flemming, K.; Hassan Obeid, M.; Fahmy, K.(69)


Utility of redox-active ligands for reversible multi-electron transfer in uranyl(VI) complexes

Takeyama, T.; Tsushima, S.(71); Takao, K.


Highly Altered State of Proton Transport in Acid Pools in Charged Reverse Micelles

Hao, H.; Adams, E.; Funke, S.; Schwaab, G.; Havenith, M.; et al. (6 authors)(73)


Neptunyl(VI) Nitrate Coordination Polymer with Bis(2-pyrrolidone) Linkers Highlighting Crystallographic Analogy and Solubility Difference in Actinyl(VI) Nitrates

Takeyama, T.(75); März, J.(76); Ono, R.(77); Tsushima, S.(78); Takao, K.(79)


Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC – An Improved Approach to More Robust Thermodynamics

Friedrich, S.(81); Sieber, C.; Drobot, B.(82); Tsushima, S.(83); Barkleit, A.(84); et al. (8 authors)(85)


2022

Crystal Structures of Ce(IV) Nitrates with Bis(2-pyrrolidone) Linker Molecules Deposited from Aqueous Solutions with Different HNO3 Concentrations

Ono, R.; Kazama, H.; März, J.(90); Tsushima, S.(91); Takao, K.


Interdisciplinary biophysical studies of membrane proteins bacteriorhodopsin and rhodopsin

Fahmy, K.(93); Sakmar, T.


Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms

Fahmy, K.(95)


Lanmodulin peptides – unravelling the binding of the EF-Hand loop sequences stripped from the structural corset

Gutenthaler, S. M.(97); Tsushima, S.(98); Steudtner, R.(99); Gailer, M.; Hoffmann-Röder, A.; et al. (7 authors)(100)


Anion-specific structure and stability of guanidinium-bound DNA origami

Hanke, M.; Dornbusch, D.(103); Hadlich, C.; Roßberg, A.; Hansen, N.; et al. (9 authors)(104)


2-Phosphonobutane-1,2,4,-Tricarboxylic Acid (PBTC): pH-Dependent Behavior Studied by Means of Multinuclear NMR Spectroscopy

Kretzschmar, J.(108); Wollenberg, A.; Tsushima, S.(109); Schmeide, K.(110); Acker, M.


Salting-Out of DNA Origami Nanostructures by Ammonium Sulfate

Hanke, M.; Hansen, N.; Ruiping, C.; Grundmeier, G.; Fahmy, K.(112); et al. (6 authors)(113)


Fully Chelating N3O2-Pentadentate Planar Ligands Designed for Strongest and Selective Capture of Uranium from Seawater

Mizumachi, T.; Sato, M.; Kaneko, M.; Takeyama, T.; Tsushima, S.(115); et al. (6 authors)(116)


Hydrophobic Core Formation and Secondary Structure Elements in Uranyl(VI)–Binding Peptides

Tsushima, S.(118); Takao, K.


Synthesis and characterization of a uranyl(vi) complex with 2,6-pyridine-bis(methylaminophenolato) and its ligand-centred aerobic oxidation mechanism to a diimino derivative

Takeyama, T.; Iwatsuki, S.; Tsushima, S.(120); Takao, K.


Interaction of Th(IV), Pu(IV) and iron(III) with ferritin protein : how similar ?

Zurita, C.; Tsushima, S.(122); Lorenzo Solari, P.; Jeanson, A.; Creff, G.; et al. (6 authors)(123)


2021

Effects of Substituents on the Molecular Structure and Redox Behavior of Uranyl(V/VI) Complexes with N3O2‑Donating Schiff Base Ligands

Takeyama, T.(125); Tsushima, S.(126); Takao, K.(127)


Quenching Mechanism of Uranyl(VI) by Chloride and Bromide in Aqueous and Non-Aqueous Solutions

Haubitz, T.; Drobot, B.(129); Tsushima, S.(130); Steudtner, R.(131); Stumpf, T.(132); et al. (6 authors)(133)


Two Be or Not Two Be: The Nuclear Autoantigen La/SS-B Is able to form Dimers and Oligomers in a Redox Dependent Manner

Berndt, N.(135); Bippes, C. C.; Michalk, I.; Bachmann, D.; Bachmann, J.; et al. (21 authors)(136)


DNA-Mediated Stack Formation of Nanodiscs

Subramanian, M.; Kielar, C.(143); Tsushima, S.(144); Fahmy, K.(145); Oertel, J.


Fluorite-like hydrolyzed hexanuclear coordination clusters of Zr(IV) and Hf(IV) with syn-syn bridging N,N,N-trimethylglycine in soft crystal structures exhibiting cold-crystallization

Matsuoka, M.; Tsushima, S.(147); Takao, K.


How does iron storage protein ferritin interact with plutonium (and thorium) ?

Zurita, C.; Tsushima, S.(149); Bresson, C.(150); Garcia-Cortes, M.(151); Solari, P. L.(152); et al. (8 authors)(153)


Impact of the microbial origin and active microenvironment on the shape of biogenic elemental selenium nanomaterials

Fischer, S.; Jain, R.(157); Krause, T.; Jain, P.; Tsushima, S.(158); et al. (8 authors)(159)


Dimeric and Trimeric Uranyl(VI)–Citrate Complexes in Aqueous Solution

Kretzschmar, J.(163); Tsushima, S.(164); Lucks, C.; Jäckel, E.; Meyer, R.; et al. (10 authors)(165)


2020

A metabolic switch regulates the transition between growth and diapause in C. elegans

Penkov, S.; Raghuraman, B. K.; Erkut, C.; Oertel, J.; Galli, R.; et al. (12 authors)(171)


C. elegans possess a general program to enter cryptobiosis that allows dauer larvae to survive different kinds of abiotic stress

Gade, V. R.; Traikov, S.; Oertel, J.; Fahmy, K.; Kurzchalia, T. V.


Trimeric uranyl(VI)–citrate forms Na+, Ca2+, and La3+ sandwich complexes in aqueous solution

Kretzschmar, J.(174); Tsushima, S.(175); Drobot, B.(176); Steudtner, R.(177); Schmeide, K.(178); et al. (6 authors)(179)


Essential Role of Heterocyclic Structure of N-Alkylated 2-Pyrrolidone Derivatives for Recycling Uranium from Spent Nuclear Fuels

Inoue, T.; Kazama, H.; Tsushima, S.(182); Takao, K.(183)


Crystallization of colourless hexanitratoneptunate(IV) with anhydrous H+ countercations trapped into hydrogen bond polymer with diamide linkers

Takao, K.(185); März, J.(186); Matsuoka, M.; Mashita, T.; Kazama, H.; et al. (6 authors)(187)


2019

Crystallization of Anhydrous Proton from Acidic Aqueous Solution with Diamide Building Block

Kazama, H.; Tsushima, S.(190); Takao, K.


Lanthanide–induced conformational change of methanol dehydrogenase involving coordination change of cofactor pyrroloquinoline quinone

Tsushima, S.(192)


Calcium binding to a disordered domain of a type III-secreted protein from a coral pathogen promotes secondary structure formation and catalytic activity

Hoyer, E.; Knöppel, J.; Liebmann, M.; Steppert, M.; Raiwa, M.; et al. (12 authors)(194)


Photocatalytic Oxygenation of Cyclohexene Initiated by Excitation of [UO2(OPCyPh2)4]2+ under Visible Light

Mashita, T.; Tsushima, S.(196); Takao, K.(197)


Body size-dependent energy storage causes Kleiber’s law scaling of the metabolic rate in planarians

Thommen, A.; Werner, S.; Frank, O.; Philipp, J.; Knittelfelder, O.; et al. (11 authors)(199)


Crystal Structure of Regularly Th-Symmetric [U(NO3)6]2− Salts with Hydrogen Bond Polymers of Diamide Building Blocks

Takao, K.; Kazama, H.; Ikeda, Y.; Tsushima, S.


Cm3+/ Eu3+ Induced Structural, Mechanistic and Functional Implications for Calmodulin

Drobot, B.(203); Schmidt, M.(204); Mochizuki, Y.(205); Abe, T.; Okuwaki, K.; et al. (13 authors)(206)


2018

Ultrafast transient absorption spectroscopy of UO22+ and [UO2Cl]+

Haubitz, T.; Tsushima, S.; Steudtner, R.; Drobot, B.; Geipel, G.; et al. (7 authors)(214)


Controlling the lability of uranyl(VI) through intramolecular π-π Stacking

Mashita, T.; Tsushima, S.; Takao, K.


DNA-encircled lipid bilayers

Iric, K.; Subramanian, M.; Oertel, J.; Agarwal, N. P.; Matthies, M.; et al. (10 authors)(217)


Layer-by-Layer assembly of heparin and peptide-polyethylene glycol conjugates to form hybrid nanothin films of biomatrices

Thomas, A. K.; Wieduwild, R.; Zimmermann, R.; Lin, W.; Friedrichs, J.; et al. (9 authors)(219)


The oxidation of borohydrides by photoexcited [UO2(CO3)3]4−

Takao, K.(221); Tsushima, S.(222)


2017

Molecular and Crystal Structures of Uranyl Nitrate Coordination Polymers with Double-headed 2-Pyrrolidone Derivatives

Kazama, H.; Tsushima, S.; Ikeda, Y.; Takao, K.


Dipolar Relaxation Dynamics at the Active Site of an ATPase Regulated by Membrane Lateral Pressure

Fischermeier, E.; Pospíšil, P.; Sayed, A.; Hof, M.; Solioz, M.; et al. (6 authors)(225)


2016

The molecular switching mechanism at the conserved D(E)RY motif in class-A GPCRs

Sandoval, A.; Eichler, S.; Madathil, S.; Reeves, P. J.; Fahmy, K.; et al. (6 authors)(227)


Rational Structure-Based Rescaffolding Approach to de Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics

Ruiz-Gómez, G.; Hawkins, J. C.; Philipp, J.; Künze, G.; Wodtke, R.; et al. (8 authors)(229)


Mechanism of attenuation of uranyl toxicity by glutathione in Lactococcus lactis

Obeid, M. H.; Oertel, J.; Solioz, M.; Fahmy, K.


Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion

Oertel, J.; Keller, A.; Prinz, J.; Schreiber, B.; Hübner, R.; et al. (8 authors)(232)


Uranyl(VI) binding by bis(2-hydroxyaryl)diimine and bis(2-hydroxyaryl)diamine ligand derivatives. Synthetic, X-ray, DFT and solvent extraction studies

Jeazet, H. B. T.; Gloe, K.; Doert, T.; Mizera, J.; Kataeva, O. N.; et al. (10 authors)(234)


2015

A single-strand annealing protein clamps DNA to detect and secure homology

Ander, M.; Subramaniam, S.; Fahmy, K.; Stewart, F.; Schäffer, E.


The interaction of Eu(III) with organoborates – a further approach to understand the complexation in the An/Ln(III)–borate system

Schott, J.; Kretzschmar, J.(237); Tsushima, S.(238); Drobot, B.(239); Acker, M.; et al. (9 authors)(240)


2014

The Role of Phospholipid Headgroup Composition and Trehalose in the Desiccation Tolerance of Caenorhabditis elegans

Abusharkh, S. E.; Erkut, C.; Oertel, J.; Kurzchalia, T. V.; Fahmy, K.


Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation

Petrovska, I.; Nüske, E.; Munder, M. C.; Kulasegaran, G.; Malinovska, L.; et al. (11 authors)(246)


Paramagnetic Decoration of DNA origami Nanostructures by Eu3+ Coordination

Opherden, L.; Oertel, J.; Barkleit, A.; Fahmy, K.; Keller, K.


Experimental and Theoretical Approaches to Redox Innocence of Ligands in Uranyl Complexes: What is Formal Oxidation State of Uranium in Reductant of Uranyl(VI)?

Takao, K.; Tsushima, S.; Ogura, T.; Tsubomura, T.; Ikeda, Y.


Uranium(VI) Chemistry in Strong Alkaline Solution: Speciation and Oxygen Exchange Mechanism

Moll, H.; Rossberg, A.; Steudtner, R.; Drobot, B.; Müller, K.; et al. (6 authors)(250)



Inhalt aus Sidebar

Kontakt

Prof. Dr. Karim Fahmy

Leiter
Biophysik
k.fahmyAthzdr.de
Tel.: +49 351 260 2952
+49 351 260 3601


URL dieses Artikels
https://www.hzdr.de/db/Cms?pOid=12082


Links im Text

(1) https://orcid.org/0000-0001-7324-1671
(2) https://orcid.org/0000-0002-4520-6147
(3) https://orcid.org/0000-0001-5042-8134
(4) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(39454);
(5) https://orcid.org/0000-0002-3696-8369
(6) https://orcid.org/0000-0001-7514-8307
(7) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(39271);
(8) https://orcid.org/0000-0002-4520-6147
(9) https://orcid.org/0000-0002-3696-8369
(10) https://doi.org/10.1016%2Fj.jece.2024.113398
(11) https://orcid.org/0000-0002-4520-6147
(12) https://orcid.org/0000-0001-5042-8134
(13) https://orcid.org/0000-0002-4510-5717
(14) https://orcid.org/0000-0001-5428-2144
(15) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(38885);
(16) https://orcid.org/0000-0002-7310-5183
(17) https://orcid.org/0000-0002-0952-1334
(18) https://doi.org/10.1039%2FD4CC01030B
(19) https://orcid.org/0000-0002-3635-4690
(20) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37593);
(21) https://orcid.org/0000-0002-8752-5824
(22) https://orcid.org/0000-0002-3002-6098
(23) https://doi.org/10.1039%2FD3CC05985E
(24) https://orcid.org/0000-0001-6932-9742
(25) https://orcid.org/0000-0002-3002-6098
(26) https://orcid.org/0000-0003-0897-1461
(27) https://orcid.org/0000-0001-7139-3110
(28) https://orcid.org/0009-0000-8672-3645
(29) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37834);
(30) https://orcid.org/0000-0002-8752-5824
(31) https://orcid.org/0000-0002-1698-5591
(32) https://doi.org/10.1021%2Facs.chemmater.2c03190
(33) https://orcid.org/0000-0002-2755-6514
(34) https://orcid.org/0000-0002-9217-5574
(35) https://orcid.org/0000-0002-3002-6098
(36) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37817);
(37) https://orcid.org/0009-0002-9530-8587
(38) https://orcid.org/0000-0001-6373-0877
(39) https://orcid.org/0000-0001-7139-3110
(40) https://orcid.org/0000-0003-2550-4048
(41) https://doi.org/10.1002%2Fchem.202302464
(42) https://orcid.org/0000-0001-6827-2799
(43) https://orcid.org/0000-0002-4520-6147
(44) https://orcid.org/0000-0003-4669-0206
(45) https://orcid.org/0000-0002-9414-2936
(46) https://orcid.org/0000-0003-4960-3745
(47) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37759);
(48) https://orcid.org/0000-0002-0952-1334
(49) https://doi.org/10.1002%2Fchem.202302702
(50) https://orcid.org/0000-0002-3635-4690
(51) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37550);
(52) https://doi.org/10.1039%2Fd3nr02045b
(53) https://orcid.org/0000-0002-5200-6928
(54) https://orcid.org/0000-0002-8752-5824
(55) https://doi.org/10.1021%2Facsami.3c05100
(56) https://orcid.org/0000-0002-4520-6147
(57) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37207);
(58) https://doi.org/10.1002%2Fchem.202300636
(59) https://orcid.org/0000-0002-9995-0879
(60) https://orcid.org/0000-0002-8334-9317
(61) https://orcid.org/0000-0002-4520-6147
(62) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(36954);
(63) https://orcid.org/0000-0003-1245-0466
(64) https://orcid.org/0000-0001-5042-8134
(65) https://doi.org/10.3390%2Fmolecules28114469
(66) https://orcid.org/0000-0002-8752-5824
(67) https://doi.org/10.3390%2Fmicroorganisms11051204
(68) https://orcid.org/0000-0001-9097-9299
(69) https://orcid.org/0000-0002-8752-5824
(70) https://doi.org/10.3390%2Fmicroorganisms11030584
(71) https://orcid.org/0000-0002-4520-6147
(72) https://doi.org/10.1039%2FD3QI00189J
(73) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(36397);
(74) https://doi.org/10.1021%2Fjacs.2c11331
(75) https://orcid.org/0000-0001-6827-2799
(76) https://orcid.org/0000-0003-4960-3745
(77) https://orcid.org/0000-0002-6854-4894
(78) https://orcid.org/0000-0002-4520-6147
(79) https://orcid.org/0000-0002-0952-1334
(80) https://doi.org/10.3390%2Finorganics11030104
(81) https://orcid.org/0009-0007-3878-0734
(82) https://orcid.org/0000-0003-1245-0466
(83) https://orcid.org/0000-0002-4520-6147
(84) https://orcid.org/0000-0003-3241-3443
(85) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(35625);
(86) https://orcid.org/0000-0002-6859-8366
(87) https://orcid.org/0000-0002-4505-3865
(88) https://orcid.org/0000-0001-5042-8134
(89) https://doi.org/10.3390%2Fmolecules28124881
(90) https://orcid.org/0000-0003-4960-3745
(91) https://orcid.org/0000-0002-4520-6147
(92) https://doi.org/10.1021%2Facs.inorgchem.2c03554
(93) https://orcid.org/0000-0002-8752-5824
(94) https://doi.org/10.1007%2Fs12551%2D022%2D01003%2Dy
(95) https://orcid.org/0000-0002-8752-5824
(96) https://doi.org/10.3390%2Fmicroorganisms10071397
(97) https://orcid.org/0000-0002-8412-3328
(98) https://orcid.org/0000-0002-4520-6147
(99) https://orcid.org/0000-0002-3103-9587
(100) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(34763);
(101) https://orcid.org/0000-0003-1245-0466
(102) https://doi.org/10.1039%2Fd2qi00933a
(103) https://orcid.org/0000-0002-3635-4690
(104) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(34562);
(105) https://orcid.org/0000-0002-4520-6147
(106) https://orcid.org/0000-0002-8752-5824
(107) https://doi.org/10.1016%2Fj.csbj.2022.05.037
(108) https://orcid.org/0000-0001-5042-8134
(109) https://orcid.org/0000-0002-4520-6147
(110) https://orcid.org/0000-0002-6859-8366
(111) https://doi.org/10.3390%2Fmolecules27134067
(112) https://orcid.org/0000-0002-8752-5824
(113) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(34343);
(114) https://doi.org/10.3390%2Fijms23052817
(115) https://orcid.org/0000-0002-4520-6147
(116) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(34209);
(117) https://doi.org/10.1021%2Facs.inorgchem.2c00306
(118) https://orcid.org/0000-0002-4520-6147
(119) https://doi.org/10.1039%2FD1CP05401E
(120) https://orcid.org/0000-0002-4520-6147
(121) https://doi.org/10.1039%2FD2DT00325B
(122) https://orcid.org/0000-0002-4520-6147
(123) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(33096);
(124) https://doi.org/10.1107%2FS1600577521012340
(125) https://orcid.org/0000-0001-6827-2799
(126) https://orcid.org/0000-0002-4520-6147
(127) https://orcid.org/0000-0002-0952-1334
(128) https://doi.org/10.1021%2Facs.inorgchem.1c01449
(129) https://orcid.org/0000-0003-1245-0466
(130) https://orcid.org/0000-0002-4520-6147
(131) https://orcid.org/0000-0002-3103-9587
(132) https://orcid.org/0000-0002-4505-3865
(133) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(32687);
(134) https://doi.org/10.1021%2Facs.jpca.1c02487
(135) https://orcid.org/0000-0001-6921-0848
(136) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(32466);
(137) https://orcid.org/0000-0002-8733-4286
(138) https://orcid.org/0000-0002-8752-5824
(139) https://orcid.org/0000-0001-5099-2448
(140) https://orcid.org/0000-0002-1285-5052
(141) https://orcid.org/0000-0002-8029-5755
(142) https://doi.org/10.3390%2Fijms22073377
(143) https://orcid.org/0000-0002-3002-6098
(144) https://orcid.org/0000-0002-4520-6147
(145) https://orcid.org/0000-0002-8752-5824
(146) https://doi.org/10.3390%2Fmolecules26061647
(147) https://orcid.org/0000-0002-4520-6147
(148) https://doi.org/10.1016%2Fj.ica.2021.120622
(149) https://orcid.org/0000-0002-4520-6147
(150) https://orcid.org/0000-0002-0835-9371
(151) https://orcid.org/0000-0002-7554-8236
(152) https://orcid.org/0000-0003-3637-2669
(153) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(31457);
(154) https://orcid.org/0000-0003-2366-7628
(155) https://orcid.org/0000-0003-2880-0280
(156) https://doi.org/10.1002%2Fchem.202003653
(157) https://orcid.org/0000-0002-5494-3106
(158) https://orcid.org/0000-0002-4520-6147
(159) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(31359);
(160) https://orcid.org/0000-0002-5200-6928
(161) https://orcid.org/0000-0002-4625-1580
(162) https://doi.org/10.1021%2Facs.est.0c07217
(163) https://orcid.org/0000-0001-5042-8134
(164) https://orcid.org/0000-0002-4520-6147
(165) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(28980);
(166) https://orcid.org/0000-0002-3103-9587
(167) https://orcid.org/0000-0002-0038-1638
(168) https://orcid.org/0000-0002-6859-8366
(169) https://orcid.org/0000-0001-5570-4177
(170) https://doi.org/10.1021%2Facs.inorgchem.1c00522
(171) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(31882);
(172) https://doi.org/10.1186%2Fs12915%2D020%2D0760%2D3
(173) https://doi.org/10.1038%2Fs41598%2D020%2D70311%2D8
(174) https://orcid.org/0000-0001-5042-8134
(175) https://orcid.org/0000-0002-4520-6147
(176) https://orcid.org/0000-0003-1245-0466
(177) https://orcid.org/0000-0002-3103-9587
(178) https://orcid.org/0000-0002-6859-8366
(179) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(31389);
(180) https://orcid.org/0000-0002-4505-3865
(181) https://doi.org/10.1039%2FD0CC05460G
(182) https://orcid.org/0000-0002-4520-6147
(183) https://orcid.org/0000-0002-0952-1334
(184) https://doi.org/10.1246%2Fbcsj.20200061
(185) https://orcid.org/0000-0002-0952-1334
(186) https://orcid.org/0000-0003-4960-3745
(187) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(30059);
(188) https://orcid.org/0000-0002-4520-6147
(189) https://doi.org/10.1039%2FC9RA10090C
(190) https://orcid.org/0000-0002-4520-6147
(191) https://doi.org/10.1021%2Facs.cgd.9b01214
(192) https://orcid.org/0000-0002-4520-6147
(193) https://doi.org/10.1039%2FC9CP03953H
(194) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(29100);
(195) https://doi.org/10.1038%2Fs41598%2D019%2D42898%2D0
(196) https://orcid.org/0000-0002-4520-6147
(197) https://orcid.org/0000-0002-0952-1334
(198) https://doi.org/10.1021%2Facsomega.9b00635
(199) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(28627);
(200) https://doi.org/10.7554%2FeLife.38187
(201) https://doi.org/10.1002%2Fanie.201811731
(202) https://doi.org/10.1002%2Fange.201811731
(203) https://orcid.org/0000-0003-1245-0466
(204) https://orcid.org/0000-0002-8419-0811
(205) https://orcid.org/0000-0002-7310-5183
(206) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(27504);
(207) https://orcid.org/0000-0003-3409-1791
(208) https://orcid.org/0000-0002-5166-4849
(209) https://orcid.org/0000-0002-9708-6175
(210) https://orcid.org/0000-0002-3879-5019
(211) https://orcid.org/0000-0002-0520-3611
(212) https://orcid.org/0000-0002-4520-6147
(213) https://doi.org/10.1039%2FC9CP03750K
(214) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(27588);
(215) https://doi.org/10.1021%2Facs.jpca.8b05567
(216) https://doi.org/10.1039%2FC8DT02600A
(217) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(27364);
(218) https://doi.org/10.1039%2FC8NR06505E
(219) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(27352);
(220) https://doi.org/10.1021%2Facsami.8b02014
(221) https://orcid.org/0000-0002-0952-1334
(222) https://orcid.org/0000-0002-4520-6147
(223) https://doi.org/10.1039%2Fc8dt00559a
(224) https://doi.org/10.1021%2Facs.inorgchem.7b02250
(225) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(24433);
(226) https://doi.org/10.1002%2Fanie.201611582
(227) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(23809);
(228) https://doi.org/10.1016%2Fj.bpj.2016.06.004
(229) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(23528);
(230) https://doi.org/10.1371%2Fjournal.pone.0154046
(231) https://doi.org/10.1128%2FAEM.00538%2D16
(232) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(23429);
(233) https://doi.org/10.1038%2Fsrep26718
(234) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(21183);
(235) https://doi.org/10.1016%2Fj.poly.2015.01.005
(236) https://doi.org/10.1371%2Fjournal.pbio.1002213
(237) https://orcid.org/0000-0001-5042-8134
(238) https://orcid.org/0000-0002-4520-6147
(239) https://orcid.org/0000-0003-1245-0466
(240) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(22041);
(241) https://orcid.org/0000-0003-3241-3443
(242) https://orcid.org/0000-0001-5570-4177
(243) https://orcid.org/0000-0002-4505-3865
(244) https://doi.org/10.1039%2Fc5dt00213c
(245) https://doi.org/10.1021%2Fla502654j
(246) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(20296);
(247) https://doi.org/10.7554%2FeLife.02409
(248) https://doi.org/10.1021%2Fla501112a
(249) https://doi.org/10.1021%2Fic5006314
(250) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(19321);
(251) https://doi.org/10.1021%2Fic402664n
(252) https://www.hzdr.de/db/Cms?pOid=11732
(253) https://www.hzdr.de/db/Cms?pOid=11727
(254) https://www.hzdr.de/db/Cms?pOid=11724
(255) https://www.hzdr.de/db/Cms?pOid=11723
(256) https://www.hzdr.de/db/Cms?pOid=11729
(257) https://www.hzdr.de/db/Cms?pOid=11726
(258) https://www.hzdr.de/db/Cms?pOid=11730
(259) https://www.hzdr.de/db/Cms?pOid=11720
(260) https://www.hzdr.de/db/Cms?pOid=11719
(261) https://www.hzdr.de/db/Cms?pOid=11733