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Strehl ratios with various types of anisoplanatism

Richard J. Sasiela
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts

02173-9108

Abstract

There are many ways in which the paths of two waves through turbulence can become
separated, thereby leading to anisoplanatic effects. Among these are a parallel path
separation, an angular separation, one caused by a time delay, and one that is due
to differential refraction at two wavelengths. All these effects can be treated in the
same manner. Gegenbauer polynomials are used to obtain an approximation for the
Strehl ratio for these anisoplanatic effects, yielding a greater range of applicability

than the Maréchal approximation.

1. INTRODUCTION

Adaptive-optics systems are used to correct images of objects. These systems work by
measuring the phase distortion on a downpropagating wave called a beacon and applying
the negative of that phase to a deformable mirror. If this is done well, then the image of the
beacon is close to diffraction limited; and if a laser beam is projected along the corrected
path, it will have propagation characteristics approaching those of a wave propagating in
vacuum. It is not possible to make a perfect correction; one of the major error sources is
due to the fact that the rays of the object to be imaged or the laser beam to be propagated
are along a path displaced from that of the beacon. A measurement of this degradation is
the Strehl ratio, which is the ratio of the intensity of the actual beam on axis to that of a

diffraction-limited beam.
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There are many ways in which the paths of two waves through
turbulence can become separated, thereby leading to anisoplanatic
effects. Among these are a parallel path separation, an angular
separation, one caused by a time delay, and one that is due to
differential refraction at two wavelengths. All these effects can
be treated in the same manner. Gegenbauer polynomials are used to
obtain an approximation for the Strehl ratio for these
anisoplanatic effects, yielding a greater range of applicability
than the Mar\’{e}chal approximation.

\end{abstract}

\section{ INTRODUCTION}

Adaptive-optics systems are used to correct images of objects.
These systems work by measuring the phase distortion on a
downpropagating wave called a beacon and applying the negative of that
phase to a deformable mirror. If this is done well, then the
image of the beacon is close to diffraction limited; and if a
laser beam is projected along the corrected path, it will have
propagation characteristics approaching those of a wave propagating
in vacuum. It is not possible to make a perfect correction; one
of the major error sources is due to the fact that the rays of
the object to be imaged or the laser beam to be propagated are
along a path displaced from that of the beacon. A measurement of
this degradation is the Strehl ratio, which is the ratio of the
intensity of the actual beam on axis to that of a
diffraction-limited beam.



This displacement can have several causes. The receiving and the transmitting apertures
may be displaced from each other owing to misalignment or vignetting of the beams. The
paths can be separated in angle, for instance, when the object to be imaged is different from
the beacon. The correction is applied with a time delay after the measurements. In this
time the turbulence is displaced by winds and slewing of the telescope. The paths may be
separated because the beacon and the imaging wavelengths differ, in which case refraction
operates differently on the two waves. All the effects are typically present simultaneously.

These anisoplanatisms have been treated separately in the past'™; ...

2. STREHL RATIO WITH ANISOPLANATISM

For a perfect correction the paths of the beacon signal and the imaging or projected laser
should be the same. In general, this is not possible to achieve, and there is a degradation in
performance caused by time delays, displacement of the two paths by translation and angle,
and differences in wavelength of the beacon and the measurement or projecting systems.
The effects of displacement, angular mispointing, time delay, and atmospheric dispersion
can each be treated as an anisoplanatic effect. In fact, if all the effects are present simul-
taneously, they can be combined to get a total offset of the measurement from the imaging
paths. In this section the effect of a general displacement on the Strehl ratio is determined.
The Strehl ratio (SR) for a circular aperture” from the Huygens—Fresnel approximation

1s

(1)

SR = %/da K(a) exp [—Ml .

2

The integral is over a circular aperture of unit radius, D(e) is the structure function, and

K(«) is a factor times the optical transfer function given by

16

K(a) = — [cos_l(a) -« (1 - az)

Y 2] U(l - a), 2)



This displacement can have several causes. The receiving and the
transmitting apertures may be displaced from each other owing to
misalignment or vignetting of the beams. The paths can be
separated in angle, for instance, when the object to be imaged is
different from the beacon. The correction is applied with a time
delay after the measurements. In this time the turbulence is
displaced by winds and slewing of the telescope. The paths may be
separated because the beacon and the imaging wavelengths differ,
in which case refraction operates differently on the two waves.

A1l the effects are typically present simultaneously.

These anisoplanatisms have been treated separately in the
past\cite{1,2,3,4,5,6,7}; \ldots

\section{ STREHL RATIO WITH ANISOPLANATISM}

\label{SR}

For a perfect correction the paths of the beacon signal and the
imaging or projected laser should be the same. In general, this
is not possible to achieve, and there is a degradation in
performance caused by time delays, displacement of the two paths
by translation and angle, and differences in wavelength of the
beacon and the measurement or projecting systems.

The effects of

displacement, angular mispointing, time delay, and atmospheric
dispersion can each be treated as an anisoplanatic effect. 1In
fact, if all the effects are present simultaneously, they can be
combined to get a total offset of the measurement from the imaging
paths. In this section the effect of a general displacement on
the Strehl ratio is determined.

The Strehl ratio (SR) for a circular aperture \cite{7} from the
Huygens--Fresnel approximation is \begin{eqnarray}{\rm SR}

={1 \over {2\pi }}\int {{\rm d}\bbox \alpha }\,K(\alpha )\,\exp
\,\left[ {-{{{\cal D}\left( {\bbox \alpha } \right)} \over 2}}
\right].\end{eqnarray} The integral is over a circular aperture of
unit radius, ${\cal D}( {\bbox \alpha } )$ is the structure
function, and $K(\alpha )$ is a factor times the optical
transfer function given by \begin{eqnarray}K(\alpha )={{16} \over
\pi F\left[ {\cos ~{- 1}(\alpha )-\alpha \left( {1i-\alpha "2}
\right)~{1/ 2}} \right]\,U(1- \alpha ),\end{eqnarray}



where U () is the unit step function defined as
Ulx)=1 for >0,
U(x)=0 for z<0. (3)

To find the Strehl ratio, one must first determine the structure function. It was found
by Fried* for angular anisoplanatism. If the source is collimated and a general displacement

is introduced, his expression for a wave propagating from ground to space becomes
D(aD) = 2(2.91) ko / dz C.2(2) [(@D)** + d*3(2)
0
— o laD+d(z) [P - laD-d@) "], (4)

where C,%(z) is the turbulence strength as a function of altitude; ko = 27/), where X is the
wavelength of operation; D is the aperture diameter; and d(z) is the vector displacement of
the two paths.

The sums of the terms in brackets almost cancel, thus causing difficulties if one tries to
evaluate this integral numerically. The terms in the absolute-value sign are equal to

]5/6 ’ (5)

laD +d(2) " = [(aD)* £ 2a Dd(z) cos () + d*(2)
where is the angle between o and d(z) . This expression can be simplified and the numerical
difficulties can be eliminated by using Gegenbauer polynomials.® Their generating function
is
~A et
(1 —2az + a2) =3 CMz)d". (6)
p=0

These functions are sometimes referred to as ultraspherical functions because they are a

generalization of the Legendre polynomials P,(t) , whose generating function is

o0

~1/2
(1 —2az + a2) 2 > Py(z)a. (7)
p=0
The Gegenbauer polynomials with the cosine of a variable as the argument are given in Eq.

(8.934 #2) of Ref. 8 and can be rewritten as
E.T [A+m] T [A+p—m]cos|(p —2m)y]

Cp [cos ()] = mZ:O m! (p —m)! (T [A])?

: (8)



where

$U\left( x \right)$ is the unit step function defined as
\begin{eqnarray} U( x )&=&1\,\,\,\,\,\,\,\,{\rm for}\,\,\,\,x\ge
0\,, \nonumber \\  U( x )&=&O0\,\,\,\,\,\,\,\,{\rm
forF\,\,\,\,x<0\,\,. \end{eqnarray}

To find the Strehl ratio, one must first determine the structure
function. It was found by Fried\cite{4} for angular
anisoplanatism. If the source 1is collimated and a general
displacement is introduced, his expression for a wave propagating
from ground to space becomes

\begin{eqnarray}

{\cal D}({\alpha

\kern 1ptD} )&=& 2(2.91)\,{k_0}"2\int\limits_{\,\,\; OF"{\,\,\,\,\,\;
\infty} {\rm d}z\,{C_n}"2(z)\left[ {( {\alpha \kern 1ptD} )~{5/
33+d~{6/ 3}(z)}\right. \nonumber\\

&&\left.

{-{\slantfrac{1}{2}}\,\left| {{\bbox \alpha} \kern 1ptD+{\bbox
d}(z)\,} \right|~{5/ 3} -{\textstyle \slantfrac{1}{2}}\left|
{\,{\bbox \alpha} \kern 1ptD-{\bbox d}(z)\,} \right|~{5 / 3}}
\right],

\end{eqnarray?}

where ${C_n}"2(z)$ is the turbulence

strength as a function of altitude; $k_0=2\kern 1pt\pi / \lambda
,$ where $\lambda $ is the wavelength of operation; $D$ is the
aperture diameter; and ${\bbox d}(z)$ is the vector displacement
of the two paths.

The sums of the terms in brackets almost cancel, thus causing
difficulties if one tries to evaluate this integral numerically.
The terms in the absolute-value sign are equal to
\begin{eqnarray}\left| {\,{\bbox \alpha} \kern 1ptD\pm {\bbox
d}(z)\,} \right|~{5/ 3}=\left[ {\left( {\alpha \kern 1ptD}
\right) "2\pm 2\alpha \kern 1ptD\,d(z)\cos \left( \varphi
\right)+d~2(z)} \right]~{5/ 6},\end{eqnarray} where is the angle
between ${\bbox \alpha} § and ${\bbox d}( z )$ . This
expression can be simplified and the numerical difficulties can be
eliminated by using Gegenbauer polynomials.\cite{8} Their
generating function is \begin{eqgnarray}\left( {1-2ax+a”2}

\right) "{-\lambda }=\sum\limits_{p=0}"\infty {{C_p}~\lambda
(x)\,a"p}. \end{eqnarray} These functions are sometimes referred
to as ultraspherical functions because they are a generalization of
the Legendre polynomials $P_n(t)$ , whose generating function is
\begin{eqnarray}\left( {1- 2ax+a"2} \right)“~{-1/
2}=\sum\limits_{p=0}"\infty {P_p(x)\,a"p}.\end{egnarray} The
Gegenbauer polynomials with the cosine of a variable as the
argument are given in Eq. (8.934 \#2) of Ref. \onlinecite{8} and
can be rewritten as \begin{eqnarray}{C_p}~\lambda \left[ {\cos
\left( \varphi \right)} \right]l=\sum\limits_{m=0}"p
{}{{\Gamma\,\left[ {\lambda +m} \right]l\,\Gamma\,\left[ {\lambda
+p-m} \right]\cos \left[ {(p-2m)\varphi } \rightl} \over

{m!\, (p-m) '\, \left ( {\Gamma\,\left[ \lambda \right]}
\right)~2}},\end{eqnarray}



where - ' [z] is the gamma function. A particular Gegenbauer polynomial that is required
is
Gy P leos()] = o [L= Yacos (¢)]. 9)
For D > d(z) , the terms in the structure function can be expanded in Gegenbauer

polynomials. The zeroth- and all odd-order terms cancel. When the summation index

is changed by the substitution p — 2p the result is

D(aD) = 2(2.91) k2 / dz C2(2) {d5/3(z)—(ap)5/3f302p—5/6 [cos ()] [%] } (10)

p=1

It is this canceling of the first two terms of the power series that would cause numerical
difficulties.

Define a distance moment as
dyy = 2.91 ko2 / dz C2(2) d™(2) (11)
0
and a phase variance as
U<p2 = ds3. (12)

Unlike the calculation for Strehl ratio for uncorrected turbulence and for corrected turbulence
with tilt jitter, an exact analytical solution cannot be found for anisoplanatism. Fortunately,
for adaptive-optics systems, the Strehl ratio should be fairly high by design, which requires
the structure function to be small. This assumption allows one to retain only the first term

of the Gegenbauer expansion to give

D(aD) = 20,% — 2, (13)
where
T =ds [1 —  Yycos? (<p)] ¥s(aD) "3, (14)

We justify this single-term approximation below by showing that it produces a result close

to the exact result.



where - $\Gamma\left[ x \rightl$ is

the gamma function. A particular Gegenbauer polynomial that is
required is \begin{eqgnarray}{C_2}"{-5/ 6}\left[ {\cos (\varphi )}
\right]={\textstyle{\slantfrac{5}{6}}}\left[ {1- {\textstyle{
\slantfrac{1}{3}}}\cos ~2\left( \varphi \right)} \right].
\end{eqnarray} For $\alpha \kern 1ptD>d(z)$ , the terms in the
structure function can be expanded in Gegenbauer polynomials. The
zeroth- and all odd-order terms cancel. When the summation index
is changed by the substitution $p\to 2\kern 1ptp$ the result is
\begin{eqnarray} {\cal D}(\alpha \kern
1ptD)=2(2.91)\,{k_0}"2\int\1limits_{\,\,\, O} {\,\,\,\,\,\,\infty}{\rm
d}z\,{C_n}"2(z) \left\{ {a"{5/ 3}(z)- (\alpha \kern 1ptD)~{5/

3N\ sum\limits_{p=1}"\infty {{C_{2p}}~{- 5/ 6}\,\left[ {\cos \left(
\varphi \right)} \right]l}\,\left[ {{{d(z)} \over {\alpha \kern
1ptD}}} \right]~{2p}} \right\}.\end{egnarray} It is this canceling
of the first two terms of the power series that would cause
numerical difficulties.

Define a distance moment as

\begin{eqnarray}td_m\equiv 2.91\,{k_0}"2\int\limits_{\,\,\,

0F I\, L\, L\ \inftyH\rm d}z\,{C_n}"2(2)\,d"m(z) \end{egnarray}
and a phase variance as \begin{eqnarray}{\sigma _\varphi}~2=d_{5/
3}.\end{eqnarray} Unlike the calculation for Strehl ratio for
uncorrected turbulence and for corrected turbulence with tilt
jitter, an exact analytical solution cannot be found for
anisoplanatism. Fortunately, for adaptive-optics systems, the
Strehl ratio should be fairly high by design, which requires the
structure function to be small. This assumption allows one to
retain only the first term of the Gegenbauer expansion to give
\begin{egnarray}{\cal D}(\alpha \kern 1ptD)=2{\sigma
_\varphi}~2-2x,\end{eqnarray} where

\begin{eqnarray}tx=d_{2}\left[ {1-
{\textstyle{\slantfrac{1}{3}}}\cos ~“2\left( \varphi \right)}
\right]{\slantfrac{5}{6}}(\alpha \kern 1ptD)"{-1/ 3}.\end{eqnarray}
We justify this single-term approximation below by showing that it
produces a result close to the exact result. \\ \1ldots \\



The Strehl ratio with the six term approximation is

exp (—0,?) / 22 ¥ 1t af
~ SRV Ty ) 1
SR o daK(a)1+x+2+6+24+120 (15)

If just the first term in the last parenthetical expression is retained, the result is equivalent
to the extended Maréchal approximation. It is shown below that the six-term approximation
is best for aperture sizes normally encountered. The angle integral for the nth term, after

use of the binomial theorem, is proportional to

2m 2m
]. n 1 n n
o) =5 [ do[L— Theos’ (9)]" = o 37 [ dpeos™(¢),  (16)
2m 2T = _
0 m=U\n—-m 0
n !
I — (17)
n—m (n—m)! m!
Equation (4.641 # 4) in Gradshteyn and Ryzhik® is
w/2
om w(2m — 1)!!
_ 18
{ de cos™ () 22 (18)
where
2m—1)!'=2m—-1)2m—-3)...(3)(1), (19)
2m)!' = (2m)(2m — 2) ... (4)(2). (20)
With these relations, the angle integral is equal to
" n (2m — 1!
P =1- me—_~ | 21
() 2 S g (1)
m=l\ n—m

The values of interest to us are ®(0) = 1, ®(1) = 0.8333, ®(2) = 0.7083, ®(3) = 0.6134,
®(4) = 0.5404, and ®(5) = 0.4836. The aperture integration for the nth term is proportional

to

Y(n) = /daal’"/?’K(a). (22)

10



The

Strehl ratio with the six term approximation is
\begin{eqnarray}{\rm SR} \approx {{\exp \left( {-\sigma
_\varphi} ~2 \right)} \over {2\pi }}\int {\rm d{\bbox \alpha}
\,K(\alpha )\, }\kern-.5em\left( {1+x+{{x"2} \over 2}+{{x"3} \over 6}+{{x"4}
\over {24}}+{{x"5} \over {120}}} \right).\end{eqnarray}

If just

the first term in the last parenthetical expression 1is retained,
the result is equivalent to the extended Mar\’{el}chal
approximation. It is shown below that the six-term approximation
is best for aperture sizes normally encountered. The angle
integral for the $n$th term, after use of the binomial theorem, is
proportional to

\begin{egnarray}\Phi (n)={1 \over {2\pi

IR int\limits_{\,\,\, O} {\,\,\,\,\,\,\,\, 2\pi } {\rm d}\varphi \,\left[
{1-\slantfrac{1}{3}} \cos “2\left( \varphi \right) \right] n={1
\over {2\pi }}\sum\limits_{m=0}"n {\left( \begin{array}{c} n \\
n-m\end{array} \right)}\,3"{-m}\int\limits_{\,\,\, 0}~{\,\,\,\,\,\, 2\pi
} {\rm d\varphi }\, \cos ~{2m}\left( \varphi

\right) ,\end{eqnarray}

\begin{eqgnarray}\left(

\begin{array}{c} n \\ n-m \end{array} \right)={{n!} \over {\left(
{n-m} \right)!\,\,m!}}.\end{eqnarray’}

Equation (4.641 \# 4) in

Gradshteyn and Ryzhik\cite{8} is
\begin{egnarray}\int\limits_{\,\,\, OF"{\,\,\,\,\,\, \pi / 2}{\rm
d\varphi \,}\cos ~“{2m}\left( \varphi \right)={{\pi (2m-1)!!} \over
{2(2m) !''}},\end{eqnarray}

where

\begin{eqgnarray}(2m-1) ! 1&=&(2m-1) (2m-3) \1dots (3) (1), \\

(2m) ! '&=& (2m) (2m-2) \1dots (4) (2).\end{egnarray}

With these

relations, the angle integral is equal to

\begin{eqgnarray}\Phi (n)=1-\sum\limits_{m=1}"n {\left(
\begin{array}{cIn \\ n-m \end{array} \right)}\,3"{-m}{{(2m-1)!!}
\over {(2m)!!}}.\end{eqnarray}

The values of interest to us are

$\Phi (0) = 1§, $\Phi (1) = 0.8333$, $\Phi (2) = 0.70838§, $ \Phi
(3) = 0.61348%, $\Phi (4) = 0.5404$, and $\Phi (5) = 0.4836%. The
aperture integration for the $n$th term is proportional to
\begin{eqgnarray}Y(n)=\int\limits_{\,\,\, O0}X"{\,\,\,\,\,\, 1} {\rm d\alpha
\,Halpha “{1-n/ 3}K(\alpha ).\end{eqnarray}

11



3. DISPLACEMENT ANISOPLANATISM

In the simplest case of displacement anisoplanatism, which was treated in Section 2, the
displacement is constant along the propagation direction. The terms to use to find the

Strehl ratio are

d(z) =d, (23)
do = 2.91 k3 po @, (24)
d 2 D /3
E=688(—=| (= 25
(D) (ro) ’ (25)
d 5/3
o2 = 2.91 kg o d°® = 6.88 (7) . (26)

The Strehl ratios are plotted in Figs. 2 and 3.

4. ANGULAR ANISOPLANATISM

When the propagation beam is offset by a constant angle from the direction along which

turbulence is measured, the effect is called angular anisoplanatism.?* ...

5. TIME DELAY

If there is a time delay between when turbulence is measured and when a correction is
applied to the deformable mirror, there is a degradation in performance.” This effect is not

often thought of as an anisoplanatic effect; however, it can be treated as such. ...

d(z) = v(2)T, (27)
L
dy = 2.91 k3 / dz Ch2(2) v¥(2) 7% = (1/72)°, (28)
0
2
-
S, (29
L
ai =2.91k; / dz CL%(2) v*3(2) 3 = (7‘/7'5/3)5/3, (30)
0

12



\section{ DISPLACEMENT ANISOPLANATISM}

\label{da}

In the simplest case of displacement anisoplanatism, which was
treated in Section \ref{SR}, the displacement is constant along
the propagation direction. The terms to use to find the Strehl
ratio are \begin{eqnarray} d(z)&=&d , \\
d_{\,2}&=£&2.91\,k_0"2\,\mu _0\,d"2 , \\ E&=46.88\,\left( {{d
\over D}} \right)~2\left( {{D \over {r_o}}} \right)~{5/3} |,

\\ \sigma _\varphi ~2&=&2.91\,k_0"2\,\mu _0\,d"{5/3}=6.88\, \left(
{{d \over {r_o}}} \right)~{5/3} . \end{eqgnarray}

The Strehl
ratios are plotted in Figs. \ref{f5} and “\ref{f10}.

\section{ ANGULAR ANISOPLANATISM}

\label{aa}

When the propagation beam is offset by a constant angle from the
direction along which turbulence is measured, the effect is called
angular anisoplanatism.\cite{4} \ldots

\section{ TIME DELAY}

\label{td}

If there is a time delay between when turbulence is measured and
when a correction is applied to the deformable mirror, there is a
degradation in performance.\cite{7} This effect is not often
thought of as an anisoplanatic effect; however, it can be treated
as such.

\begin{egnarray} d(z)&=&v(z)\tau , \\
d_2&=42.91\,k_0"2\int\limits_{\,\,\, O}"{\,\,\,\,\,\, L} {\rm
d}z\,{C_n}"2(z2)\,v"2(z)\,\tau ~2=\left( {\tau / \tau _2} \right)~2

o \\ E&=¢{{\tau "2} \over {\tau _2°2D"{1/ 3}}} , \\ \sigma
_\varphi ~2&=&2.91\,k_0"2\int\limits_{\,\,\, O}"{\,\,\,\,\,\, L} {\rm
d}z\,{C_n}"2(z)\,v"{5/ 3}(z)\,\tau ~{5/ 3}=\left( {\tau / \tau _{5/
3}} \right)~{5/ 3} , \end{egnarray}

13



where the temporal moment is defined as

L
1/75/3 = 2.91 k2 / dz C,2(2) 0™ (2). (31)
0

6. CHROMATIC ANISOPLANATISM

If the beacon beam that senses the turbulence has a wavelength different from that of the
laser beam that is sent out, then the two beams will follow different paths through the

atmosphere because of the dispersive properties of the atmosphere. ...

7. COMBINED DISPLACEMENT

If there are several anisoplanatic effects present, with each not decreasing the Strehl ratio
much, it is a common practice to multiply the Strehl ratios for the individual effects to get

a combined Strehl ratio. ...
di(2) =d+ 0z +v(2)T +d.(2), (32)

where chromatic displacement is given in Eq. (50). The two terms necessary for calculating

the Strehl ratio are ...

14



where the temporal moment is

defined as \begin{egnarray} 1/ \tau _m~{5/
3}=2.91\,k_0"2\int\limits_{\,\,\, O}"{\,\,\,\,\,\, L} {\rm
d}rz\,{C_n}"2(z)\,v°'m(z) . \end{eqnarray}?}

\1ldots

\section{ CHROMATIC ANISOPLANATISM}

\label{ca}

If the beacon beam that senses the turbulence has a wavelength
different from that of the laser beam that is sent out, then the
two beams will follow different paths through the atmosphere
because of the dispersive properties of the atmosphere. \ldots

\section{ COMBINED DISPLACEMENT}

\label{cd}

If there are several anisoplanatic effects present, with each not
decreasing the Strehl ratio much, it is a common practice to
multiply the Strehl ratios for the individual effects to get a
combined Strehl ratio. \ldots

\begin{eqnarray?}

{\rm \pmb{d}}_t(z)={\rm \pmb{d}}+{ \rm \bbox{

\theta}} \kern 1ptz+{\rm \pmb{v}}(z)\tau +{\rm \pmb{d}}_c(z) ,
\end{eqnarray} where chromatic displacement is given in Eq. (50).
The two terms necessary for calculating the Strehl ratio are
\1ldots

15



8. SUMMARY

An approximate expression for the Strehl ratio that is easily evaluated for any turbulence
distribution was derived. It applies for various anisoplanatic effects. This expression was
shown to give much better agreement with the exact answer than the extended Marechal
approximation. The zenith dependence is included in the formula. This approximation
was applied to parallel path displacements, angular offsets, time-delay induced offsets, and
offsets owing to refractive effects that vary with wavelength. Examples for each type of
anisoplanatism at various zenith angles were evaluated.

The Strehl ratio in the presence of several effects was examined. It was shown that,
depending on the direction of the relative displacements, one can get a cancellation or an
enhancement of the effect of the displacements. Therefore it is possible for there to be little
reduction in the Strehl ratio if there is little net path displacement. If the displacements
are in the same direction, the Strehl ratio is less than the product of the Strehl ratios of the

individual terms.
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\section{ SUMMARY}

\label{Su}

An approximate expression for the Strehl ratio that is easily
evaluated for any turbulence distribution was derived. It applies
for various anisoplanatic effects. This expression was shown to
give much better agreement with the exact answer than the extended
Marechal approximation. The zenith dependence is included in the
formula. This approximation was applied to parallel path
displacements, angular offsets, time-delay induced offsets, and
offsets owing to refractive effects that vary with wavelength.
Examples for each type of anisoplanatism at various zenith angles
were evaluated.

The Strehl ratio in the presence of several effects was examined.
It was shown that, depending on the direction of the relative
displacements, one can get a cancellation or an enhancement of the
effect of the displacements. Therefore it is possible for there
to be little reduction in the Strehl ratio if there is little net
path displacement. If the displacements are in the same
direction, the Strehl ratio is less than the product of the Strehl
ratios of the individual terms.
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FIGURES

Fig. 1. Comparison of the Maréchal and the two- to six-term approximations with the exact

value of the Strell ratio, for an anisoplanatic displacement, for D/rq equal to 1.

Fig. 2. Comparison of the Maréchal and the two- to six-term approximations with the exact

value of the Strell ratio, for an anisoplanatic displacement, for D/ry equal to 5.

Fig. 3. Comparison of the Maréchal and the two- to six-term approximations with the exact

value of the Strell ratio, for an anisoplanatic displacement, for D/ry equal to 10.

Fig. 4.  Strehl ratio for angular anisoplanatic error at zenith, for various turbulence models,
versus separation angle for a 0.6-m system. Upper-altitude turbulence has a strong effect on the
Strehl ratio.

Fig. 5. Strehl ratio for angular anisoplanatism at 30° for a 0.6-m system.

Fig. 6.  Strehl ratio versus time delay at zenith for a 0.6-m system.

Fig. 7.  Strehl ratio versus time delay for a 0.6-m system at 30° zenith angle. Strehl ratio at 30°

for a 0.6-m system.

Fig. 8. Difference (x10°) in refractive index between 0.5 ym and other wavelengths.
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\begin{figure}

\caption{ Comparison of the Mar\’{e}chal and the two- to six-term
approximations with the exact value of the Strell ratio, for an
anisoplanatic displacement, for $D/r_0$% equal to 1.}\label{f1l}
\end{figure}

\begin{figure}

\caption{ Comparison of the Mar\’{e}chal and the two- to six-term
approximations with the exact value of the Strell ratio, for an
anisoplanatic displacement, for $D/r_0$ equal to 5. } \label{f5}
\end{figure}

\begin{figure}

\caption{ Comparison of the Mar\’{e}chal and the two- to six-term
approximations with the exact value of the Strell ratio, for an
anisoplanatic displacement, for $D/r_0$ equal to 10. } \label{f10}
\end{figure}

\begin{figure}

\caption{Strehl ratio for angular anisoplanatic error at zenith,
for various turbulence models, versus separation angle for a 0.6-m
system. Upper—altitude turbulence has a strong effect on the
Strehl ratio.}

\label{faaz}

\end{figure}

\begin{figure}

\caption{ Strehl ratio for angular anisoplanatism at $30"{\circ}$
for a 0.6-m system.}

\label{faa30}

\end{figure}

\begin{figure}

\caption{ Strehl ratio versus time delay at zenith for a 0.6-m
system.}

\label{ftdz}

\end{figure}

\begin{figure}

\caption{ Strehl ratio versus time delay for a 0.6-m system at
$30"{\circ}$ zenith angle. Strehl ratio at $30°{\circ}$ for a
0.6-m system. }

\label{ftd30}

\end{figure}

\begin{figure}

\caption{ Difference ($\times 1076$) in refractive index between
$0.5 \, \mu \rm m$ and other wavelengths.}\label{fri}
\end{figure}
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TABLES
Table 1. Values of T3 and 75,3 to Solve for the Chromatic Displacement for Various Turbulence

Models for a Wavelength of 0.5 pym

Model T2a T5/3b

SLC-Day 2.71 x 1076 2.00 x 1077

HV-21 6.16 x 106 3.60 x 1077

HV-54 3.40 x 107° 1.87 x 1076

HV-72 5.95 x 107° 3.25 x 1076
¢The units of Ty are m!/3.

by /3 1s dimensionless.
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\begin{table}

\caption{Values of $T_2$ and $T_{5/3}$% to Solve for the Chromatic
Displacement for Various Turbulence Models for a Wavelength of 0.5
$\mu \rm m$}

\begin{tabular}{lcc}

Model&$T_2$\tablenote{The units of $T_2% are $m~{1/3}$.}&
$T_{5/3}$\tablenote{$T_{5/3}$ is dimensionless.} \\ \tableline
SLC-Day&$2.71 \, \times \, 10°{-6}$&%$2.00 \, \times \, 10"{-7}$\\
HV-21&$6.16 \, \times \, 10°{-6}$&$3.60 \, \times \, 10°{-7}$\\
HV-54&%$3.40 \, \times \, 10°{-5}$&$1.87 \, \times \, 10°{-63}$\\
HV-72&$5.95 \, \times \, 10"{-5}$&$3.25 \, \times \, 10°{-63}$\\
\end{tabular}

\end{table}

\end{document}
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Generation, propagation, and amplification of dark
solitons

W. Zhao and E. Bourkoff
Department of FElectrical and Computer Engineering, The University of South Carolina,
Columbia, South Carolina, 29208

Abstract

The technique for generating dark solitons with constant background using guided-
wave Mach—Zehnder interferometers is further examined. Under optimal conditions,
a reduction of 30% in both the input optical power and the driving voltage can be
achieved, as compared with the case of complete modulation. Dark solitons are also
found to experience compression through amplification. When the gain coefficient
is small, adiabatic amplification is possible. Raman amplification can be used as
the gain mechanism for adiabatic amplification, in addition to being used for loss-
compensation. The frequency and time shifts caused by intrapulse stimulated Raman
scattering are both found to be a factor of 2 smaller than those for bright solitons.

Finally, the propagation properties of even dark pulses are described quantitatively.

1. INTRODUCTION

Nonlinear optical pulses can propagate in dispersive fibers in the form of bright and dark
solitons under certain conditions, as first described by Zakharov and Shabat in 1972! and
in 1973,2 respectively. They are stationary solutions of the initial boundary value problem

of the nonlinear Schrédinger equation (NLSE).?
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The technique for generating dark solitons with constant background
using guided-wave Mach--Zehnder interferometers is further examined.
Under optimal conditions, a reduction of 30\% in both the input optical power
and the driving voltage can be achieved, as compared with the case of
complete modulation. Dark solitons are also found to experience compression
through amplification. When the gain coefficient is small, adiabatic
amplification is possible. Raman amplification can be used as the gain
mechanism for adiabatic amplification, in addition to being used for
loss-compensation. The frequency and time shifts caused by intrapulse
stimulated Raman scattering are both found to be a factor of 2 smaller
than those for bright solitons. Finally, the propagation properties of
even dark pulses are described quantitatively.

\end{abstract}

\section{ INTRODUCTION}

\label{INT}

Nonlinear optical pulses can propagate in dispersive fibers in the form of
bright and dark solitons under certain conditions,

as first described by Zakharov and Shabat in 1972\cite{ZA}

and in 1973,\cite{ZB}

respectively.

They are stationary solutions of the initial boundary value problem of the
nonlinear Schr{$\rm\ddot o$}dinger equation (NLSE).\cite{SA} \ldots
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In the anomalous dispersion regime of the fiber, under the boundary condition u(z,t =
+00) = 0, there exists a class of particle-like, stationary solutions called bright solitons.* In
the normal dispersion region, under the boundary condition |u(z,? = +00)| =constant, one
can obtain another class of stationary solutions, which are called dark solitons, since a dip
occurs at the center of the pulse.’ ...

In the following discussions, we adopt the normalization convention used in Agrawal’s

book.® We normalize the field amplitude A (optical power Py = A?) into u by

2\ 1/2
"y (27m270 ) Al
AMerr|Ba|

where Agg is the effective area of the propagating mode, ny, = 3.2 x 107%cm?/W is the
nonlinear optical Kerr coefficient of the silica fiber, and (3, is a parameter describing the

group velocity dispersion of fiber, ...

2. GENERATION OF DARK SOLITONS

In our earlier work”™® we discussed the possibility of using an integrated Mach—Zehnder
interferometer (MZI) to generate dark solitons with constant background. ...

... Therefore the pulse after the MZI, when properly biased, can have the form

u(0,t) = asin[dr/2 tanh(t)], (1)

3. PROPAGATION AND AMPLIFICATION

As discussed in Section 2, when smaller values of § are used, pulses of better characteristics
are obtained. This can be seen in Fig. 1(d), where a = 1.33 and a pure fundamental dark

soliton is generated. ....
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In the anomalous dispersion regime of the fiber, under the boundary
condition $§ u( z, t = \pm \infty ) = 0 §, there exists

a class of particle-like, stationary solutions

called bright solitons.\cite{HA}

In the normal dispersion region, under the boundary condition

$ | u( z, t = \pm \infty ) | = $constant,

one can obtain another class of stationary solutions,

which are called dark solitons, since a dip occurs at the

center of the pulse.\cite{HB} \ldots

In the following discussions, we adopt the normalization convention
used in Agrawal’s book.\cite{AB}

We normalize the field amplitude $A$ (optical power $P_0 = A"2 §)
into $u$ by

\begin{eqnarray*}

u = \left( { 2 \pi n_2 {\tau_0}"2 }\over

{ \lambda A_{\rm eff} | \beta_2 | } \right)~{1/2} A ,
\end{eqnarray*}

where $A_{\rm eff }$ is the effective area of the propagating
mode, $n_2 = 3.2\times 10°{-16}$cm$"2 /$W is the nonlinear optical
Kerr coefficient of the silica

fiber, and $ \beta_{2} $§ is a parameter describing

the group velocity dispersion of

fiber, \ldots

\section{GENERATION OF DARK SOLITONS}

\label{GDS}

In our earlier work\cite{ZBD,ZBE} we discussed the possibility
of using an integrated Mach--Zehnder interferometer

(MZI) to generate dark solitons with constant background. \ldots

\1ldots Therefore the pulse after the MZI,
when properly biased, can have the form
\begin{eqnarray}
u (0,t) = a\, {\rm sin} [ \delta \pi /2\, {\rm tanh} (t) ],
\label{E1}
\end{eqgnarray}

\section{PROPAGATION AND AMPLIFICATION}

\label{PAA}

As discussed in Section \ref{GDS}, when smaller values of

$ \delta $§ are used, pulses of better

characteristics are obtained. This can be seen in Fig. 1(d), where
$ a = 1.33 $§ and a pure fundamental dark soliton is

generated. \ldots
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We first examine the solution of a modified NLSE with a constant gain:
iu, — 1/2uy + |u*u = iTu, (2)

where [ is assumed to be a constant, appropriate for the Raman amplification under strong

pumping without depletion. The solution of a similar equation to Eq. (2), but ...

t' = te'”, (3a)
2I'z
, e *—1
= 3b
“T o o (3b)
u = ve'”. (3c)

Under this transformation, the NLSE has the new form

NG
v 4
s + 1 (4)

iy —  Yovpy — [v|Pv = —
The solution of Eq. (2) when I' = 0 is well known and has the form expl[io(z,t)|x tanh xt,
where & is the form factor and the phase variable satisfies 0o /0z = k2.! Therefore, when
the right-hand-side of Eq.(4) is zero, an exact solution for v(2’,¢) can be obtained from Eq.
(4). On the other hand, when z — 0o and hence 2z’ — oo or I' — 0, the right-hand side of

Eq. (4) becomes infinitely small. Under these conditions, we can treat the right-hand side

of Eq. (4) as a perturbation to the NLSE. ...

€2I‘z -1
u(z,t) = exp (7, 5T > e"* tanh(te"?), (5)
= g(e—ZF,,z + €—2Fp(L—z)) _ Fs; (6)
L+ AL
- :inh(FpL) “ @
k(z) = Ko exp(Bz). (8)

4. EFFECTS OF INTRAPULSE STIMULATED RAMAN SCATTERING

The properties of dark solitons considered thus far are based on the simplified propagation

equation (2). ...
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We first examine the solution of a modified NLSE with a constant gain:
\begin{eqnarray}

i u {z} - {1/2F vw_{tt} + |ul"2 v = i \Gamma u,

\label{E2}

\end{eqnarray}

where $\Gamma $ is assumed to be a constant,

appropriate for the Raman amplification

under strong pumping without depletion. The

solution of a similar equation to Eq. (\ref{E2}),

but \ldots

\begin{mathletters}

\begin{eqnarray}

t’ &=& t e"{ \Gamma z }, \label{E4} \\

z’ &=& { e {2 \Gamma z } - 1 \over 2 \Gamma }, \label{E5} \\
u &=& v e { \Gamma z } . \label{E6}
\end{eqnarray}

\end{mathletters}

Under this transformation, the NLSE has the new form
\begin{eqnarray}

i v_{z’} -\slantfrac{i}{2} v_.{ t’ t’> } - |vl"2 v &=&

- { \Gamma t’ \over 2 \Gamma z’ + 1} v_{t’}. \label{E7}
\end{eqnarray?}

The solution of Eq. (\ref{E2}) when $\Gamma $ = O is well known and
has the form ${\rm exp} [i \sigma (z,t) ] \kappa \tanh \kappa t $,
where $\kappa $ is the form factor and the phase variable satisfies
$ \partial \sigma / \partial z = \kappa~2 $.\cite{ZA}
Therefore, when the right-hand-side of

Eq. (\ref{E7}) is zero, an exact solution for $v(z’,t)$ can be
obtained from Eq. (\ref{E7}).

On the other hand, when $z \rightarrow \infty $ and hence

$z’ \rightarrow \infty $ or $ \Gamma \rightarrow 0$, the
right-hand side of Eq. (\ref{E7}) becomes infinitely small.

Under these conditions, we can treat the right-hand

side of Eq. (\ref{E7}) as a perturbation to the NLSE.

\1ldots

\begin{eqnarray}

u(z,t)&=&{\rm exp}\left( i{e~{2\Gamma z}-1 \over 2\Gammal}\right)
e"{\Gamma z} \, {\rm tanh} (te"{\Gamma z}),

\label{E8} \\
\Gamma&=&g (e~ {-2\Gamma_pz} + e~{-2\Gamma_p(L-z)}) - \Gamma_s,
\label{E9} \\

g&=&{\Gamma_p(\Gamma_s + \beta)L \over {\rm sinh}(\Gamma_pL)}
e”{\Gamma_pL} , \label{E10} \\

\kappa(z) &=& \kappa_0 \, {\rm exp}(\beta z). \label{E11}
\end{eqnarray}

\section{EFFECTS OF INTRAPULSE STIMULATED RAMAN SCATTERING}
\label{EIS}

The properties of dark solitons considered thus far are
based on the simplified propagation equation (\ref{E2}).
\1ldots
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... The energies of these separating solitons are distributed in such way to ensure con-

servation of momentum. ...

Olul?
ot

i, — 1/2uy + |u?u = 74 u, 9)

5. EVEN DARK PULSES

Even dark pulses,”!? which are symmetric functions of time centered around the pulse, can
be simply generated by driving the MZI with a short electric pulse. ...

If we define the amplitudes of the secondary soliton pairs as
Knp = Ko — An, (10)

then the nth order secondary pulse shape (n =1, 2, 3, ...) has the form

(An — iv)? — vy, exp[20, (t — tho — An2)]
1+ v, exp[2v,(t — tho — An2)]

un(za t) = Ko eiz’ (11)

6. CONCLUSIONS

We have discussed the possibility of using the waveguide Mach-Zehnder interferometer to
generate a variety of dark solitons under constant background. Under optimal operation,
30% less input power and driving voltage are required than for complete modulation. The
generated solitons can have good pulse quality and stimulated Raman scattering process can

be utilized to compensate for fiber loss and even to amplify and compress the dark solitons.
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\ldots The energies of these
separating solitons are distributed in such way to ensure conservation of
momentum. \1ldots

\begin{eqnarray}

iu_z - {1/2}u_{tt}+|ul"2u &=& \tau_d{\partial |ul|~2 \over \partial t}u,
\label{E12}

\end{eqnarray}?

\1ldots

\section{EVEN DARK PULSES}

\label{EDP}

Even dark pulses,\cite{KA,WA} which are symmetric functions of time
centered around the pulse, can be simply generated by driving

the MZI with a short electric pulse. \ldots

If we define the amplitudes of the secondary soliton pairs as
\begin{eqnarray?}

\kappa_n = \kappa_0 - \Delta_{n} , \label{E16}
\end{eqnarray?}

then the $n$th order secondary pulse shape (n = 1, 2, 3, \ldots )
has the form

\begin{eqnarray}

u_n (z,t) = \kappa_{0}{(\lambda_n - i \nu_n )"2 - \nu_n
\,{\rm exp} [ 2 \nu_n (t-t_{n0} - \lambda_{n} z)] \over 1 +
\nu_n\, {\rm exp} [ 2 \nu_n (t-t_{n0} - \lambda_n z)1} e~{iz},
\label{E17%}

\end{eqnarray}

\ldots

\section{CONCLUSIONS}

We have discussed the possibility of using the waveguide Mach--Zehnder
interferometer to generate a variety of dark solitons under constant
background. Under optimal

operation, 30\% less input power and driving voltage are required

than for complete modulation. The

generated solitons can have good pulse quality and stimulated Raman
scattering process can be utilized to compensate for fiber loss and even
to amplify and compress the dark solitons. \ldots
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Fig. 1.  The dark solitons generated by the waveguide Mach-Zehnder interferometer. The ampli-
tude of the input cw light is chosen to be a = w/2 for (a)-(c). The parameter ¢ is (a) 0.8, (b) 0.5,
and (c) 0.2. Part (d) is the case of optimal operation when a = 1.33, and § = 0.7. In all cases,
the output pulse shapes are plotted as solid curves while the dashed curves are input pulse shapes.

The pulses shown here are at a propagation distance of z = 4.

Fig. 2. Dark solitons under constant gain. Pulse shapes (solid) when I'=0.05 (a) and 1(b), after
certain propagation distance, ['z=1.6, as compared to input pulse shapes (dashed). (c): The pulse
duration, relative to its input, as a function of I'z at various I'. The solid curve is the adiabatic
approximation obtained by perturbation method. Three values of I" are used: I' = 0.05 (dotted);

0.2 (dash-dotted); and 1 (dashed). Negative I'z depicts the case of loss.

Fig. 3. The pulse shapes of amplified dark solitons. (a) § = 0.5, 8 = 2inl.05, T')L = 2, after
8 amplifying cycles (solid); (b) 6 = 0.5, § = 2In1.02, T',L = 2, after 16 amplifying cycles (solid);
(c) 6§ =0.5, p =2Inl1.02, T,L = 0.5, after 16 amplifying cycles (solid); (d) The input pulse is the
same as in Fig. 1(c), 8 = 2In1.05, after 8 amplification periods (solid). The input pulse shapes are

plotted as dashed curves.

Fig. 4. (a) The shape of a fundamental dark soliton after a propagation distance of 40 (solid).
The normalized time delay 74 = 0.01. The dashed curve is the input pulse shape. (b) The trace
of the soliton (solid) as a function of propagation distance for the situation described by (a). The

dotted curve represents the case for a fundamental bright soliton under similar conditions.
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\begin{figure}

\caption{The dark solitons generated by the waveguide

Mach-Zehnder interferometer. The amplitude of the input cw

light is chosen to be $§ a = \pi /2 § for (a)-(c). The

parameter $ \delta $ is (a) 0.8, (b) 0.5, and (c) 0.2. Part (d) is the case
of optimal operation when $ a = 1.33 §, and $§ \delta = 0.7 $§. 1In all
cases, the output pulse shapes are plotted as solid curves while

the dashed curves are input pulse shapes. The pulses shown here are at a
propagation distance of $ z = 4 $.}

\end{figure}

\begin{figure}

\caption{

Dark solitons under constant gain. Pulse shapes (solid) when $\Gamma$=0.05
(a) and 1(b), after certain propagation distance, $\Gamma$z=1.6, as
compared to input pulse shapes (dashed). (c): The pulse duration, relative
to its input, as a function of $\Gamma z$ at various $\Gamma$.

The solid curve is the adiabatic approximation obtained by perturbation
method. Three values of $\Gamma$ are used: $\Gamma$ = 0.05 (dotted);

0.2 (dash-dotted); and 1 (dashed). Negative $\Gamma$z depicts the case

of loss.}

\end{figure}

\begin{figure}

\caption{

The pulse shapes of amplified dark solitons. (a) $ \delta = 0.5 8§,

$ \beta = 2 1n 1.05$, $ \Gamma_p L = 2 §, after 8 amplifying cycles
(solid); (b) $ \delta = 0.5 %, $ \beta = 2 1n 1.02 $, $ \Gamma_p L

= 2§, after 16 amplifying cycles (solid); (c) $ \delta = 0.5 $,

$ \beta = 2 1n1.02$, $ \Gamma_p L = 0.5 $, after 16 amplifying
cycles (solid); (d) The input pulse is the same as in Fig. 1(c),

$ \beta = 2 1n 1.05 §, after 8 amplification periods (solid). The
input pulse shapes are plotted as dashed curves.}

\end{figure}

\begin{figure}

\caption{

(a) The shape of a fundamental dark soliton after a propagation distance
of 40 (so0lid). The normalized time delay $ \tau_d = 0.01 $§. The dashed

curve is the input pulse shape. (b) The trace of the soliton (solid)

as a function of propagation distance for the situation described by (a).
The dotted curve represents the case for a fundamental bright soliton
under similar conditiomns.}

\end{figure}
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Table 2. Amplitudes of Secondary Even Dark Pulses

Input Pulse Shape

A, Values Ko|tanht| ko[l — exp(—12/7,2)]/? ko[l — sech(t/7s)] Avg. Range
A 0.34 0.30 0.21 0.28 +25%
Ag 1.56 1.41 1.26 1.41 +11%
Az 2.47 2.26 2.28 2.34 +6%
Ay 3.52 3.25 3.31 3.36 +6%
As 4.45 4.26 4.42 4.38 +6%
Ag 5.52 5.3 5.50 5.50 +5%
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\begin{table}

\caption{Amplitudes of Secondary Even Dark Pulses}
\begin{tabular}{cccccr}

&&Input Pulse Shape&&&\\

\cline{2-4}

$\Delta_n$Values&$\kappa_O|{\rm tanh}t|$&$\kappa_0[1-{\rm exp}(-t~2/
{\tau_g}"2)1"{1/2}$&$\kappa_0[1-{\rm sech}(t/\tau_s)]$&Avg.&Range\\
\tableline

$\Delta_1$&0.34&0.30&0.21&0.28&$\pm 25\%$ \\
$\Delta_2$&1.56&1.41&1.26&1.41&$\pm 11\%$ \\
$\Delta_3$&2.47&2.26&2.28%2.344$\pm 6\%$ \\
$\Delta_4$&3.52&3.25&3.31&3.36&$\pm 6\%$ \\
$\Delta_5$&4.45&4.26&4 .42&4 .38&$\pm 6\%$ \\
$\Delta_6$&5.52&5.35&5.50&5.50&$\pm 5\%$ \\

\end{tabular}

\end{table}

\end{document}
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Designing digital optical computing systems: power
distribution and cross talk

Jonathan P. Pratt and Vincent P. Heuring
When this work was performed, both the authors were with the Boulder Optoelectronic
Computing Systems Center and Department of Electrical and Computer Engineering,
Uniwversity of Colorado, Campus Box 425, Boulder, Colorado 80309-0425. They are now
with the Department of Radiology, University of Colorado Health Sciences Center, Box
A034, 4200 East Ninth Avenue, Denver, Colorado 80262.

Abstract

Complex optical computer designs must implicitly or explicitly allow for power bud-
geting, to compensate for cross talk and loss in both devices and interconnections.
We develop algorithms for calculating the system cross talk and power loss in opti-
cal systems, using a graph-theoretic model. Devices are modeled as directed graphs
with nodes representing inputs and outputs, and edges are weighted with the power
relationships between nodes. Systems are modeled by interconnecting the individual
device graphs in a manner that reflects the connectivity of the system. A system’s
power budget is efficiently computed by a depth-first search of its graph. The al-
gorithms have been incorporated into an optical computer-aided design system that
is now being used to design a bit-serial optical computer containing hundreds of
components.

Key words: Optical computing, optical systems, optical communications, power

loss, cross talk, graphs.
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1. Introduction

We describe a technique that facilitates the design of digital optical computers and other
complex optical circuitry, such as optical communications systems. Although there has been
some discussion in the literature of power budgeting in optical systems,>? the treatment has

been limited to relatively uncomplicated applications, ...

2. Power Loss and Cross Talk in the System

A. Introduction

Appropriate signal levels must be maintained in any digital optical system that uses signal
level thresholds to encode transmitted information. Usually a high-level signal represents a
logic 1 and a low-level signal represents a logic 0. In these systems the device characteristics

of importance are power loss and cross talk.

B. Power Levels and Correct Device Operation

Here we discuss the type of power information desired from a system model. Since the
objective is to find weak points in the system power flow, only power extremes are consid-
ered. Power extremes are the cross talk and signal levels obtained when the worst possible
combinations of device states and input power levels are assumed.

... The weakest 1 arriving at the detection point under all conditions from all possible
paths to the point is defined as Pj;,, and similarly, the strongest 0 is defined as Pyyax.

Proper device operation can be ensured if the following relations are met:

Pomax < Psa < Pp < Ps1 < Pimin. (1)
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\section{ Introduction}
We describe a technique that facilitates the design
of digital optical computers and other complex optical circuitry,
such as optical communications systems. Although there has
been some discussion in the literature of power budgeting in
optical systems,\cite{1,2} the treatment has been limited to
relatively uncomplicated applications, \ldots

\section{Power Loss and Cross Talk in the System}

\subsection{ Introduction}

Appropriate signal levels must be maintained in any digital
optical system that uses signal level thresholds to encode
transmitted information. Usually a high-level signal represents a
logic 1 and a low-level signal represents a logic 0. In these
systems the device characteristics of importance are power

loss and cross talk.

\ldots

\subsection{Power Levels and Correct Device Operation}

Here we discuss the type of power information desired from a
system model. Since the objective is to find weak points in the
system power flow, only power extremes are considered. Power
extremes are the cross talk and signal levels obtained when

the worst possible combinations of device states and input

power levels are assumed.

\1ldots The weakest 1 arriving at the

detection point under all conditions from all possible paths
to the point is defined as $P_{1\rm min}$, and similarly, the
strongest 0 is defined as $§ P_{0\rm max}$. Proper

device operation can be ensured if the following relations
are met:

\begin{equation} P_{0\rm max} < P_{S2} < P_{D} <

P_{S1} < P_{1\rm min}.\label{p0} \end{equation}
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It is also desirable to have information about Pp.,, the maximum power level that can
occur at the inputs to a given device. A power detector may provide erroneous results when
the power of a logic 1 arriving at a detection point is too large; that is, when P, exceeds
Pp by some large amount. A second and more important reason for computing Py, is that
it makes the major contribution to cross talk, as discussed below. Knowledge of the power
triple Pomax, Pimin, and Ppax at each device in a system permits the tracking of power levels

throughout the entire system.

C. Modeling the Device

Here we discuss the means for calculating the power triples Pypax, Pimin, and P,y at the
outputs of a given device, given the values of the triples at each of its inputs. ...

... The power triple for the jth output of a device is computed from the input triples
and the coupling terms as follows:

Pimin(out); = . e“é%%tes { ingl&%sz' [Pimin(in); — Ly;(s)]}, Lij(s) € loss, (2)

Prax(in); — L;j(s) , Li;j(s) € cross talk,
P fout), — ax(in); = Lij(5)  Lis(s) 5
§ € states inputsi POmaX(in)i — Li]’(S) y Lij(S) € IOSS,

Ppax(out); =  max > Pax(in); — Li;(s). (4)

s € states ;5
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It is also

desirable to have information about $ P_{\rm max} $, the maximum
power level that can occur at the inputs to a given device. A

power detector may provide erroneous results when the power

of a logic 1 arriving at a detection point is too large;

that is, when $ P_{\rm max} $§ exceeds $ P.D § by some large

amount. A second and more important reason for computing $

P_{\rm max} $§ is that it makes the major contribution to

cross talk, as discussed below. Knowledge of the power

triple $ P_{0\rm max}, P_{i\rm min}, $ and $ P_{\rm max} $

at each device in a system permits the tracking of power

levels throughout the entire system.

\subsection{ Modeling the Device}
Here we discuss the means for calculating the power triples
$ P_{0\rm max},\kern.5em P_{1\rm min}, $ and $ P_{\rm max}$
at the outputs of a given device, given the values of the
triples at each of its inputs. \ldots

\1ldots The power triple for the $j$th output of a device is
computed from the input triples and the coupling terms as
follows: \begin{egnarray} P_{1\rm

min} ({\rm out})_j & = & \begin{array}[t]{c}{\rm min} \\[-15pt]
{s\in\rm states} \end{array}\, \{ \, \begin{array}[t]{c}{\rm min}
\\[-15pt] {\rm inputs}\, i \end{array} \; [P_{1\rm min}({\rm in})_i
- L{ij}(s)I\}, L_{ij}(s) \; \in \; {\rm

loss},\label{pimin} \\ P_{O\rm max}({\rm out})_j & =&

\begin{array} [t]{c}H\rm max} \\[-15pt] {s\in\rm states}
\end{array}\, \sum_{{\rm inputs}\, i}\left\{

\begin{array}{1}P_{\rm max}{\rm (in)}_i - L_{ij}(s)\; ,\;
L_{ij}(s)\in {\rm cross\, talk},\label{pOmax} \\ P_{0\rm max}({\rm
in})_i - L_{ij}()\; ,\; L_{ij}(s)\in {\rm loss}, \end{array}
\right. \\ P_{\rm max}({\rm out})_j &=& \begin{array}[t]l{c}{\rm
max} \\[-15pt] {s\in\rm states} \end{array}\, \sum_{{\rm inputs}\,
i} P_{\rm max}{\rm (in)}_i - L_{ij}(s) . \label{pmax}
\end{eqnarray}?
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Equation (2) states that the power of the minimum 1 emerging from the jth output of
the device will be the minimum over all possible states of the minimum over all possible
inputs having loss terms of the minimum 1’s arriving at those inputs minus the loss terms.
Equation (3) states that the power of the maximum 0 emerging from the jth output of the

device will be the maximum over all possible states of the sum of the inputs ...

D. Modeling the System

In this section we extend the applicability of the device graph model to complete systems.

3. Discussion

The technique described above is indispensable in designing complex optical systems whose
components have significant nonidealities. It has been incorporated into a digital optical
computer-assisted design system, HATCH,!° where it has proven invaluable in the design of
optical counters and an optical delay line memory system. It is now being used in designing

a bit-serial optical computer now under construction in our laboratories. ...
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Equation (\ref{pimin}) states that the power of
the minimum 1 emerging from the {\it j}th output of the device will

be the minimum over all possible states of the minimum over
all possible inputs having loss terms of the minimum 1°’s
arriving at those inputs minus the loss terms. Equation
(\ref{pOmax}) states that the power of the maximum O emerging

from the {\it j}th output of the device will be the maximum over
all possible states of the sum of the inputs \ldots

\subsection{ Modeling the System}
In this section we extend the applicability of the device graph model
to complete systems. \ldots

\section{Discussion}

The technique described above is indispensable in designing
complex optical systems whose components have significant
nonidealities. It has been incorporated into a digital optical
computer-assisted design system, HATCH,\cite{10} where it has
proven invaluable in the design of optical counters

and an optical delay line memory system. It is now being

used in designing a bit-serial optical computer now under
construction in our laboratories. \ldots
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Power fluctuations at a detection point.

General device model.

Modeling a lithium niobate switch.

Modeling device loss and cross talk.

Optical circuit.
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\begin{figure}
\caption{ Power fluctuations at a detection point.} \end{figure}

\begin{figure}

\caption{General device model.} \end{figure}

\begin{figure} \caption{Modeling a lithium niobate switch.}
\end{figure}

\begin{figure}

\caption{Modeling device loss and cross talk.} \end{figure}

\begin{figure}

\caption{Optical circuit.} \end{figure}

\begin{figure} \caption{Graph model of optical circuit.}
\end{figure}
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Table 3. Minimum Signal Powers

Vertex Pyin (dBm)

1 0

2 -3
3 -5
4 -5
5 -8
6 -11
7 -8

a0



\begin{table}

\caption{Minimum Signal Powers}
\begin{tabular}{cc}

Vertex&$P_{1\rm min} $§ (dBm) \\ \tableline
1& O NN 2 & -3 \\ 3 & -5 \\
4 -5 \\ 5& -8\\ 6& -11 \\
7 & -8

\end{tabular}

\end{table}
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